Distribution, Inference, and Event Structure

Aaron Steven White
University of Rochester
Department of Linguistics

Stanford University
12 October 2018

Slides available at aaronstevenwhite.io

Data available at $\{$ megaattitude.io decomp.io

Collaborators

Kyle Rawlins
Johns Hopkins University
Department of Cognitive Science

Ben Van Durme

Johns Hopkins University
Department of Computer Science

Introduction

Overarching question

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; Iackendoff 1972;

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

Overarching question

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; Iackendoff 1972;

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

Semantic

Properties
$\left[\begin{array}{cc}+ & \text { Telic } \\ - & \text { durative } \\ - & \text { Stative } \\ & \cdots\end{array}\right]$

Overarching question

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; ;ackendoff $972 ;$

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

What could matter?

Factors claimed to affect the distribution of nominals Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

What could matter?

Factors claimed to affect the distribution of nominals
Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

Factors claimed to affect the distribution of clauses
Sensitive to 'content-dependent' properties like representationality, preferentiality, factivity/veridicality, communicativity, etc. Bolinger 1968;
Hintikka 1975; Hooper 1975; Stalnaker 1984; Farkas 1985; Villalta 2000, 2008; Kratzer 2006; Egré 2008;
Scheffler 2009; Moulton 2009; Anand and Hacquard 2013; Rawlins 2013; Portner and Rubinstein
2013; Anand and Hacquard 2014; Spector and Egré 2015; Bogal-Allbritten 2016; Theiler et al. 2017

Overarching Hypothesis

Hypothesis
The distribution of clauses is determined by the same semantic properties as the distribution of nouns (cf. Koenig and Davis 2001)

Overarching Hypothesis

Hypothesis
The distribution of clauses is determined by the same semantic properties as the distribution of nouns (cf. Koenig and Davis 2001) Not properties dependent on having propositional content
(White and Rawlins, 2017, 2018)

Overarching Hypothesis

Hypothesis
The distribution of clauses is determined by the same semantic properties as the distribution of nouns (cf. Koenig and Davis 2001)

Not properties dependent on having propositional content

(White and Rawlins, 2017, 2018)

Intuition

Predicates that take clauses characterize neo-Davidsonian
eventualities, like any other verb. (Kratzer 2006; Hacquard 2006; Moulton 2009;
Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.)

Case study

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Case study

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Case study

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Claim
There is no direct relationship between factivity and veridicality (qua semantic properties) and syntactic distribution

Case study

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Claim
There is no direct relationship between factivity and veridicality (qua semantic properties) and syntactic distribution

The relationship is mediated by event structural properties.

Outline

Introduction

Outline

Introduction
Veridicality and distribution

Outline

Introduction
Veridicality and distribution
Predicting responsivity from veridicality
Measuring syntactic distribution
Measuring veridicality inferences
Predicting responsivity

Outline

Introduction
Veridicality and distribution
Predicting responsivity from veridicality
Measuring syntactic distribution
Measuring veridicality inferences
Predicting responsivity
Predicting distribution from veridicality
Expanded measure of veridicality
Predicting distribution

Outline

Introduction
Veridicality and distribution
Predicting responsivity from veridicality
Measuring syntactic distribution
Measuring veridicality inferences
Predicting responsivity
Predicting distribution from veridicality
Expanded measure of veridicality
Predicting distribution
Case study: decision predicates
Interpretation of embedded questions
Data and proposal
Implementation

Outline

Introduction
Veridicality and distribution
Predicting responsivity from veridicalityMeasuring syntactic distribution
Measuring veridicality inferences
Predicting responsivity
Predicting distribution from veridicality
Expanded measure of veridicalityPredicting distributionCase study: decision predicates
Interpretation of embedded questions
Data and proposal
Implementation
Conclusion

Veridicality and distribution

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Kartunen 1971a; Egré 2008; Kartunen 2012; Spector and Egré 2015 a.o.

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Kartunen 1971a; Egré 2008; Kartunen 2012; Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Kartunen 1971a; Egré 2008; Kartunen 2012; Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Kartunen 1971a; Egré 2008; Kartunen 2012; Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Factivity

A verb v is factive iff NP V S presupposes S kiparsky and Kiparsky 1970; Kartunen 1971b et seq

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Kartunen 1971a; Egré 2008; Kartunen 2012; Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Factivity

A verb v is factive iff NP V S presupposes S kiparsky and Kiparsky 1970; Kartunen 1971b et seq
(2) a. Jo didn't know that Bo was alive \rightarrow Bo was alive

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Karttunen 1971a; Egré 2008; Kartunen 2012; Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Factivity

A verb v is factive iff NP V S presupposes S kiparsky and Kiparsky 1970; Kartunen 1971b et seq
(2) a. Jo didn't know that Bo was alive \rightarrow Bo was alive
b. Jo didn't prove that Bo was alive \nrightarrow Bo was alive

Veridicality/factivity and responsivity

Responsivity (Lahiri, 2002)
A verb is responsive iff it takes interrogatives and declaratives see also
Karttunen 1977b,a; Groenendijk and Stokhof 1984 et seq
(3) a. Jo knew that Bo was alive.
b. Jo knew whether Bo was alive.

Generalization
A verb is responsive iff \{factive (Hintikka, 1975) / veridical (Egré, 2008)\}
see also George 2011; Uegaki 2012, 2015; cf. Beck and Rullmann 1999; Spector and Egré 2015
(4) a. Jo knew \{that, whether\} Bo was alive.
b. Jo thought \{that, *whether\} Bo was alive.

Predicted correlation

Factivity/Veridicality

Testing correlation

Measurement of syntactic distribution
MegaAcceptability dataset (white and Rawlins, 2016a)

Testing correlation

Measurement of syntactic distribution
MegaAcceptability dataset (White and Rawlins, 2016a)
Measurement of veridicality
MegaVeridicality dataset (White and Rawlins, 2018)

Predicting responsivity from veridicality

MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings

MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings for
 1000 clause-embedding verbs

Verb selection

MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings for
 1000 clause-embedding verbs
 \times
 50 syntactic frames

Sentence construction

Challenge

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Frame construction

Sentence construction

Challenge

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution
Construct semantically bleached frames using indefinites

Sentence construction

Challenge

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites
(5) Examples of responsives
a. know + NP V \{that, whether\} S

Someone knew \{that, whether\} something happened.

Sentence construction

Challenge

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites
(5) Examples of responsives
a. know + NP V \{that, whether\} S

Someone knew \{that, whether\} something happened.
b. tell + NP V NP \{that, whether\} S

Someone told someone \{that, whether\} something happened.

Sentence construction

Challenge

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites
(5) Examples of responsives
a. know + NP V \{that, whether\} S

Someone knew \{that, whether\} something happened.
b. tell + NP V NP \{that, whether\} S

Someone told someone \{that, whether\} something happened.

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each
- Each verb only once per list

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each
- Each verb only once per list
- Each frame only once per list

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each
- Each verb only once per list
- Each frame only once per list
- 727 unique Mechanical Turk participants

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each
- Each verb only once per list
- Each frame only once per list
- 727 unique Mechanical Turk participants
- Annotators allowed to do multiple lists, but never the same list twice

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each
- Each verb only once per list
- Each frame only once per list
- 727 unique Mechanical Turk participants
- Annotators allowed to do multiple lists, but never the same list twice
- 5 judgments per item

Data collection

- 1,000 verbs $\times 50$ syntactic frames $=50,000$ sentences
- 1,000 lists of 50 items each
- Each verb only once per list
- Each frame only once per list
- 727 unique Mechanical Turk participants
- Annotators allowed to do multiple lists, but never the same list twice
- 5 judgments per item
- No annotator sees the same sentence more than once

Task

```
Sentence Acceptability Task (expert annotation)
    Requester: JHU Semantics Lab
    Quallifications Required: None
1. Someone needed whether something happened
\begin{tabular}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{tabular}
2. Someone hated which thing to do.
\begin{tabular}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
3. Someone was worried about something.
\(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\)
\(0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0\)
4. Someone allowed someone do something.
\begin{tabular}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Turktools (Erlewine and Kotek, 2015)

\section*{Validating the data}

\section*{Interannotator agreement \\ Spearman rank correlation calculated by list on a pilot 30 verbs}

\section*{Validating the data}

\section*{Interannotator agreement}

Spearman rank correlation calculated by list on a pilot 30 verbs

\section*{Pilot verb selection}

Same verbs used by White (2015); White et al. (2015), selected based on Hacquard and Wellwood's (2012) attitude verb classification

\section*{Validating the data}

\section*{Interannotator agreement}

Spearman rank correlation calculated by list on a pilot 30 verbs

\section*{Pilot verb selection}

Same verbs used by White (2015); White et al. (2015), selected based on Hacquard and Wellwood's (2012) attitude verb classification
1. Linguist-to-linguist median: \(0.70,95 \%\) CI: [0.62, 0.78]
2. Linguist-to-annotator median: \(0.55,95 \% \mathrm{CI}:[0.52,0.58]\)
3. Annotator-to-annotator median: \(0.56,95 \%\) CI: [0.53, 0.59]

\section*{Results}


\section*{Results}


\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect acceptability judgments? Couldn't you just get it from frequency distributions?

\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect acceptability judgments? Couldn't you just get it from frequency distributions?

\section*{Answer 1}

Necessarily yes. Because learners do it.

\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect acceptability judgments? Couldn't you just get it from frequency distributions?

\section*{Answer 1}

Necessarily yes. Because learners do it.
Answer 2
Practically no. At least not without a model that's effectively equivalent to whatever the learner uses.

\section*{Corpus data}
42.8 million verb-subcategorization frame pairs extracted from Parsed ukWaC (PukWaC) (Baronie eal, 2009)

\section*{Corpus data}
42.8 million verb-subcategorization frame pairs extracted from Parsed ukWaC (PukWaC) (Baronie eal, 2009)

2 billion word web corpus constructed from crawl of the .uk domain, dependency parsed with MaltParser (Nive etal, 2007)

\section*{Corpus data}
42.8 million verb-subcategorization frame pairs extracted from Parsed ukWaC (PukWaC) (Baronie eal, 2009)

2 billion word web corpus constructed from crawl of the .uk domain, dependency parsed with MaltParser (Nive etal, 2007)


\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...
5.1 ...what the complementizer is (if any)

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...
5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...
5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)

\section*{Subcategorization frame extraction}

Features extracted see white 2015 for details
1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...
5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

\section*{Acceptability v. PukWaC corpus counts}
\begin{tabular}{c} 
Predicted acceptability \\
(based on corpus distribution) \\
\hline
\end{tabular}

Acceptability

\section*{Acceptability v. PukWaC corpus counts}


Acceptability

\section*{Acceptability v. PukWaC corpus counts}


Acceptability

\section*{Acceptability v. corpus counts}

\section*{Question}

Is this due to noisy parsing and extraction?

\section*{Acceptability v. corpus counts}

\section*{Question}

Is this due to noisy parsing and extraction?

\section*{Question}

Probably not; purportedly very clean (but smaller) frequency datasets like VALEX (Korthonen et al, 2006) actually have slightly worse cross-validated \(r^{2}\)

\section*{Acceptability v. VALEX corpus counts}

\footnotetext{
Predicted acceptability
(based on corpus distribution)
}

Acceptability

\section*{Acceptability v. VALEX corpus counts}


Acceptability

\section*{Acceptability v. VALEX corpus counts}


Acceptability

\section*{Predicting acceptability}

Note \#1
Does not imply that frequency and acceptability unrelated

\section*{Predicting acceptability}

Note \#1
Does not imply that frequency and acceptability unrelated
Note \#2
Acceptability is derived in part from frequency data

\section*{Predicting acceptability}

Note \#1
Does not imply that frequency and acceptability unrelated
Note \#2
Acceptability is derived in part from frequency data

\section*{Point}

Frequency and acceptability are likely not related at the level of syntactic structure

\section*{Predicting acceptability}

Note \#1
Does not imply that frequency and acceptability unrelated
Note \#2
Acceptability is derived in part from frequency data

\section*{Point}

Frequency and acceptability are likely not related at the level of syntactic structure

Solution
We likely need some sort of abstraction that clears away noise

\section*{Acceptability v. corpus-based type signatures}
Predicted acceptability
(based on corpus distribution)

Acceptability

\section*{Acceptability v. corpus-based type signatures}


Acceptability

\section*{Acceptability v. corpus-based type signatures}


Acceptability

\section*{Testing correlation}

Measurement of syntactic distribution
MegaAcceptability dataset (White and Rawlins, 2016a)
Measurement of veridicality
MegaVeridicality dataset (White and Rawlins, 2018)

\section*{Task}
...you will be given a statement and a question related to that statement. Your task will be to respond yes, maybe or maybe not, or no to the question, assuming that the statement is true. (cf. Kartunen et al., 2014)

\section*{Task}
61. Someone knew that a particular thing happened.

Did that thing happen?
no

> maybe or maybe not

How acceptable is the bolded sentence?
terrible \(\begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & \text { perfect }\end{array}\)

\section*{Task}
68. Someone didn't know that a particular thing happened.

Did that thing happen? no

> maybe or maybe not
yes

How acceptable is the bolded sentence?
\begin{tabular}{lllllll} 
terrible & 2 & 3 & 4 & 5 & 6 & perfect
\end{tabular}

\section*{Stimuli}

517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames

\section*{Stimuli}

517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames

\section*{Stimuli}

517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames
- 348 verbs only in the active frame

\section*{Stimuli}

517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames
- 348 verbs only in the active frame
- 142 only in the passive frame

\section*{Stimuli}

517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames
- 348 verbs only in the active frame
- 142 only in the passive frame
- 27 in both

\section*{Stimuli}

517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames
- 348 verbs only in the active frame
- 142 only in the passive frame
- 27 in both

1,088 items randomly partitioned into 16 lists of 68

\section*{Stimuli}

\section*{Active}
(6) a. Someone thought that a particular thing happened.
b. Someone didn't think that a particular thing happened.

\section*{Stimuli}

\section*{Active}
(6) a. Someone thought that a particular thing happened.
b. Someone didn't think that a particular thing happened.

\section*{Passive}
(7) a. Someone was told that a particular thing happened.
b. Someone wasn't told that a particular thing happened.

\section*{Stimuli}

\section*{Active}
(6) a. Someone thought that a particular thing happened.
b. Someone didn't think that a particular thing happened.

\section*{Passive}
(7) a. Someone was told that a particular thing happened.
b. Someone wasn't told that a particular thing happened.
(8) a. Someone was bothered that a particular thing happened.
b. Someone wasn't bothered that a particular thing happened.

\section*{Participants}

160 unique participants through Amazon's Mechanical Turk

\section*{Participants}

160 unique participants through Amazon's Mechanical Turk
- 10 ratings per item...

\section*{Participants}

160 unique participants through Amazon's Mechanical Turk
- 10 ratings per item...
- ...given by 10 different participants

\section*{Raw responses}
know

\section*{Raw responses}


\section*{Raw responses}


\section*{Raw responses}


\section*{Raw responses}


\section*{Raw responses}


\section*{Raw responses}


\section*{Normalization}

\section*{Normalization}

\section*{Transformation (roughly)}

Map each verb to single two-dimensional point by assigning -1 to no, 0 to maybe, and 1 to yes, then take the mean.

\section*{Normalized responses}


\section*{Normalization}

\section*{Transformation (roughly)}

Map each verb to single two-dimensional point by assigning -1 to no, 0 to maybe, and 1 to yes, then take the mean.

Normalize
Use ridit scoring to normalize for how often a particular participant gives a particular response.

\section*{Normalized responses}


\section*{Normalized responses}

Nonveridicals

Frame
a NP that S
a NP was _ed that S
\[
\neg p \leftarrow \neg \mathrm{~V}(\mathrm{p}) \rightarrow \mathrm{p}
\]

\section*{Normalized responses}


\section*{Normalized responses}


\section*{Normalized responses}


\section*{Normalized responses}


\section*{Normalized responses}


\section*{Relating factivity, veridicality, and question-taking}

\section*{Question}

Do factivity/veridicality positively correlate with question-taking?

\section*{Correlation: factivity and question-taking}

Factivity

\section*{Measure of question selection}

\section*{Acceptability of [__CP[+Q]]}

For a particular verb, maximum acceptability over all frames that contain an interrogative complement.

\section*{Measure of question selection}

\section*{Acceptability of [__CP[+Q]]}

For a particular verb, maximum acceptability over all frames that contain an interrogative complement.

\section*{Intuition}

If a verb is acceptable in some frame that contains an interrogative complement, it is acceptable with interrogatives.

\section*{Correlation: factivity and question-taking}

Factivity

\section*{Correlation: factivity and question-taking}


Factivity

\section*{Correlation: factivity and question-taking}


\section*{Correlation: veridicality and question-taking}


\section*{Correlation: veridicality and question-taking}


\section*{Correlation: veridicality and question-taking}


\section*{What's going on?}

\section*{Question}

How could we have gotten the direction of correlation so wrong?

\section*{What's going on?}

\section*{Question}

How could we have gotten the direction of correlation so wrong?
Two hypotheses
1. Previous analyses were biased by verb frequency.

\section*{Correlation: factivity with all verbs}


Factivity

\section*{Correlation: factivity with high-frequency verbs}


Factivity

\section*{Correlation: veridicality with all verbs}


\section*{Correlation: veridicality with high-frequency verbs}



\section*{What's going on?}

\section*{Question}

How could we have gotten the direction of correlation so wrong?
Two hypotheses
1. Previous analyses were biased by verb frequency.
2. Analysis missed subregularities due to verb class.

\section*{What's going on?}

\section*{Question}

How could we have gotten the direction of correlation so wrong?
Two hypotheses
1. Previous analyses were biased by verb frequency.
2. Analysis missed subregularities due to verb class.

\section*{Moving forward}

\section*{Limitation}

Because prior generalizations focus on finite interrogatives \& declaratives, prior dataset covered only finite complements.

\section*{Moving forward}

\section*{Limitation}

Because prior generalizations focus on finite interrogatives \& declaratives, prior dataset covered only finite complements.

But there is substantial variability in the veridicality inferences generated with different complements - even for the same verb.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo forgot to buy tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo forgot to buy tofu. \(\rightarrow\) Jo didn't buy tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo forgot to buy tofu. \(\rightarrow\) Jo didn't buy tofu.
(10) a. Jo \(\mathrm{o}_{i}\) knew that she \({ }_{i}\) bought tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo forgot to buy tofu. \(\rightarrow\) Jo didn't buy tofu.
(10) a. Jo \({ }_{i}\) knew that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo forgot to buy tofu. \(\rightarrow\) Jo didn't buy tofu.
(10) a. Jo \({ }_{j}\) knew that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo knew to buy tofu.

\section*{Moving forward}
(9) a. Jo forgot that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo forgot to buy tofu. \(\rightarrow\) Jo didn't buy tofu.
(10) a. Jo \({ }_{i}\) knew that she \({ }_{i}\) bought tofu. \(\rightarrow\) Jo bought tofu. b. Jo knew to buy tofu. \(\nrightarrow\) Jo \{bought, didn't buy\} tofu.

\section*{Moving forward}

\section*{Limitation}

Because prior generalizations focus on finite interrogatives \& declaratives, prior dataset covered only finite complements.

But there is substantial variability in the veridicality inferences generated with different complements - even for the same verb.

\section*{Moving forward}

\section*{Limitation}

Because prior generalizations focus on finite interrogatives \& declaratives, prior dataset covered only finite complements.

But there is substantial variability in the veridicality inferences generated with different complements - even for the same verb.

\section*{Aim}

Measure veridicality inferences across a wide variety of syntactic contexts.

\section*{Predicting distribution from veridicality}

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)

\section*{Stimuli}

\section*{NP _ed for NP to VP}
(11) a. Someone wanted for a particular thing to happen.
b. Someone didn't want for a particular thing to happen.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)

\section*{Stimuli}

\section*{NP _ed for NP to VP}
(11) a. Someone wanted for a particular thing to happen.
b. Someone didn't want for a particular thing to happen.

NP _ed NP to VP[+ev]
(12) a. Someone told a particular person to do a particular thing.
b. Someone didn't tell a particular person to do a particular thing.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)

\section*{Stimuli}

\section*{NP _ed for NP to VP}
(11) a. Someone wanted for a particular thing to happen.
b. Someone didn't want for a particular thing to happen.

NP _ed NP to VP[+ev]
(12) a. Someone told a particular person to do a particular thing.
b. Someone didn't tell a particular person to do a particular thing.

NP _ed NP to VP[-ev]
(13) a. Someone believed a particular person to have a particular thing.
b. Someone didn't believe a particular person to have a particular thing.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)

\section*{Stimuli}

\section*{NP was _ed to VP[+ev]}
(14) a. A particular person was ordered to do a particular thing.
b. A particular person wasn't ordered to do a particular thing.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)

\section*{Stimuli}

\section*{NP was _ed to VP[+ev]}
(14) a. A particular person was ordered to do a particular thing.
b. A particular person wasn't ordered to do a particular thing.

NP was _ed to VP[-ev]
(15) a. A particular person was overjoyed to have a particular thing.
b. A particular person wasn't overjoyed to have a particular thing.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)

\section*{Stimuli}

\section*{NP _ed to VP[+ev]}
(16) a. A particular person decided to do a particular thing.
b. A particular person didn't decide to do a particular thing.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)
- [NP _ed to VP[-ev]] (165 verbs)

\section*{Stimuli}

\section*{NP _ed to VP[+ev]}
(16) a. A particular person decided to do a particular thing.
b. A particular person didn't decide to do a particular thing.

NP _ed to VP[-ev]
(17) a. A particular person hoped to have a particular thing.
b. A particular person didn't hope to have a particular thing.

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)
- [NP _ed to VP[-ev]] (165 verbs)

\section*{Stimuli}

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:
- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)
- [NP _ed to VP[-ev]] (165 verbs)

2,850 items randomly partitioned into 50 lists of 57

\section*{Results}

\section*{Note}

Mixed-effects ordinal model-based normalization to control for variability in how participants use the response scale. (see Agresti, 2014)

\section*{Results}

\section*{Note}

Mixed-effects ordinal model-based normalization to control for variability in how participants use the response scale. (see Agresti, 2014) Applied to both veridicality and acceptability judgments.

\section*{Results}

Note
Mixed-effects ordinal model-based normalization to control for variability in how participants use the response scale. (see Agresti, 2014)

Applied to both veridicality and acceptability judgments.

\section*{Intuition}

Like z-scoring, but better models response behavior.

\section*{Results}


\section*{Results}

\section*{Example: \(x\)-axis}

A particular person didn't forget to do a particular thing.

\section*{Results}


\section*{Results}

\section*{Example: \(x\)-axis}

A particular person didn't forget to do a particular thing.

\section*{Results}

\section*{Example: \(x\)-axis}

A particular person didn't forget to do a particular thing.

\section*{Example: \(y\)-axis}

A particular person forgot to do a particular thing.

\section*{Results}


\section*{Results}


\section*{Results}


\section*{Results}


\section*{Results}


\section*{Results}


\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect veridicality judgments? Couldn't you just get it from annotated corpora?

\section*{What about frequency?}

\section*{Veridicality corpus annotations}
1. FactBank (sauríand Pusteiousky, 2009, 2022)

\section*{What about frequency?}

\section*{Veridicality corpus annotations}
1. FactBank (saurí and Pustejousky, 2009, 2012)
2. UW (Lee etal, 2015)

\section*{What about frequency?}

\section*{Veridicality corpus annotations}
1. FactBank (saurí and Pustejousky, 2009, 2012)
2. UW (tee etal, 2015)
3. MEANTIME (Minard etal, 2016)

\section*{What about frequency?}

\section*{Veridicality corpus annotations}
1. FactBank (saur and Pustejovsty, 2009, 2012)
2. UW (Lee et al, 2015)
3. MEANTIME (Minard etal, 2016)
4. UDS (white etal, 2016; Rudinger et al, 2018)

\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect veridicality judgments? Couldn't you just get it from annotated corpora?

\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect veridicality judgments? Couldn't you just get it from annotated corpora?

\section*{Answer 1}

Necessarily yes. Because learners do it.

\section*{What about frequency?}

\section*{Question}

Did you really need to go to all this trouble to collect veridicality judgments? Couldn't you just get it from annotated corpora?

\section*{Answer 1}

Necessarily yes. Because learners do it.

\section*{Answer 2}

Practically no. At least not without a model that's effectively equivalent to whatever the learner uses.

\section*{What about frequency?}

\section*{Veridicality corpus annotations}
1. FactBank (saurí and Pusteiousky, 2009, 2012)
2. UW (Lee etal, 2015)
3. MEANTIME (Minard etal, 2016)
4. UDS (white etal, 2016; Rudinger et al, 2018)

\section*{What about frequency?}

\section*{Veridicality corpus annotations}
1. FactBank (saurí and Pustejousky, 2009, 2012)
2. UW (tee etal, 2015)
3. MEANTIME (Minard etal, 2016)
4. UDS (White etal, 2016; Rudingere etal, 2088)

\section*{Current state-of-the-art}

Hybrid linear-chain/tree structured neural model. (Rudingere tal, 2018)

\section*{Predicting veridicality}


Polarity • Positive • Negative
\begin{tabular}{lrr}
\hline Sentence & True & Predicted \\
\hline someone faked that something happened . & -3.15 & 0.86 \\
someone was misinformed that something happened . & -2.62 & 1.37 \\
someone neglected to do something . & -3.07 & -0.02 \\
someone pretended to have something . & -2.96 & 0.05 \\
someone was misjudged to have something . & -2.46 & 0.55 \\
someone forgot to have something . & -3.18 & -0.17 \\
someone neglected to have something . & -2.93 & 0.07 \\
someone pretended that something happened . & -2.11 & 0.86 \\
someone declined to do something . & -3.18 & -0.22 \\
someone was refused to do something . & -3.16 & -0.22 \\
someone refused to do something . & -3.12 & -0.20 \\
someone pretended to do something . & -3.02 & -0.11 \\
someone disallowed someone to do something . & -2.56 & 0.34 \\
someone was declined to have something . & -2.36 & 0.55 \\
someone declined to have something . & -3.12 & -0.23 \\
someone did n't hesitate to have something . & 1.84 & -0.96 \\
someone ceased to have something . & -2.22 & 0.57 \\
someone did n't hesitate to do something . & 1.86 & -0.92 \\
someone lied that something happened. & -1.99 & 0.78 \\
someone feigned to have something . & -3.07 & -0.31 \\
\hline
\end{tabular}

\section*{Preliminaries}

\section*{Goal \\ Extract patterns of inference - e.g. factive, veridical, or implicative.}

\section*{Preliminaries}

\section*{Goal}

Extract patterns of inference - e.g. factive, veridical, or implicative.
Approach
Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

\section*{Preliminaries}

\section*{Goal}

Extract patterns of inference - e.g. factive, veridical, or implicative.

\section*{Approach}

Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

\section*{Method}

Regularized censored factor analysis with loss weighted by normalized acceptability and scores constrained to ( \(-1,1\) ).

\section*{Preliminaries}

\section*{Goal}

Extract patterns of inference - e.g. factive, veridical, or implicative.

\section*{Approach}

Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

\section*{Method}

Regularized censored factor analysis with loss weighted by normalized acceptability and scores constrained to ( \(-1,1\) ).

Selected number of factors (12) using cross-validation procedure.

\section*{Preliminaries}

\section*{Goal}

Extract patterns of inference - e.g. factive, veridical, or implicative.

\section*{Approach}

Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

\section*{Method}

Regularized censored factor analysis with loss weighted by normalized acceptability and scores constrained to ( \(-1,1\) ).

Selected number of factors (12) using cross-validation procedure.
(Ask about specifics after the talk.)

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Pattern 3

\section*{Inference patterns}


Pattern 3

\section*{Inference patterns: factivity/veridicality}


Pattern 3

\section*{Inference patterns: factivity/veridicality}


Pattern 3

\section*{Inference patterns: factivity/veridicality}


Pattern 3

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Pattern 3

\section*{Inference patterns}


Pattern 3

\section*{Inference patterns: factivity/veridicality}


Pattern 3

\section*{Inference patterns: factivity/veridicality}


Pattern 3

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns: implicatives}


Pattern 1

\section*{Inference patterns: implicatives}


Pattern 1

\section*{Inference patterns: implicatives}


Pattern 1

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Inference patterns}

\(\begin{array}{rrrrr}-1.0 & -0.5 & 0.0 & 0.5 & 1.0\end{array}\)

\section*{Predicting distribution from inference}

\section*{Question}

Can we predict syntactic distribution directly from veridicality inference patterns?

\section*{Predicting distribution from inference}

\section*{Question}

Can we predict syntactic distribution directly from veridicality inference patterns?

Approach
Learn optimal mapping from veridicality inference patterns to syntactic distribution using cross-validated ridge regression.

\section*{Predicting distribution from inference}

\section*{Question}

Can we predict syntactic distribution directly from veridicality inference patterns?

Approach
Learn optimal mapping from veridicality inference patterns to syntactic distribution using cross-validated ridge regression.

Finding
Across all frames in MegaAcceptability, this mapping explains about \(20 \%\) of the variance in the acceptability judgments.

\section*{Predicting distribution from inference}


Syntactic structure

\section*{Predicting distribution from inference}


\section*{Syntactic structure}

\section*{Predicting distribution from inference}


Syntactic structure

\section*{Predicting distribution from inference}

\section*{Points}
1. Some amount of information about syntactic distribution carried in veridicality inferences.

\section*{Predicting distribution from inference}

\section*{Points}
1. Some amount of information about syntactic distribution carried in veridicality inferences.
1.1 Caveat: It's hard to tell how much explanation is driven by syntactic information encoded in the patterns.

\section*{Inference patterns}


Inference polarity
Matrix polarity \(\square\) negative \(\square\) positive

\section*{Predicting distribution from inference}

\section*{Points}
1. Some amount of information about syntactic distribution carried in veridicality inferences.
1.1 Caveat: It's hard to tell how much explanation is driven by syntactic information encoded in the patterns.

\section*{Predicting distribution from inference}

\section*{Points}
1. Some amount of information about syntactic distribution carried in veridicality inferences.
1.1 Caveat: It's hard to tell how much explanation is driven by syntactic information encoded in the patterns.
2. Not nearly enough information to base a generalization on.

\section*{Exploratory analysis}

\section*{Question}

What drives the relationship between veridicality and distribution?

\section*{Exploratory analysis}

\section*{Question}

What drives the relationship between veridicality and distribution?

\section*{Possibility}

The relationship is indirect, mediated by underlying features that explain both distribution and veridicality.

\section*{Exploratory analysis}

\section*{Question}

What drives the relationship between veridicality and distribution?

\section*{Possibility}

The relationship is indirect, mediated by underlying features that explain both distribution and veridicality.

\section*{Motivation}

Relationship may be mediated by non-contentful properties of contentful events Kratzer 2006; Hacquard 2006; Moulton 2009; Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.

\section*{Exploratory analysis}

\section*{Question}

What drives the relationship between veridicality and distribution?

\section*{Possibility}

The relationship is indirect, mediated by underlying features that explain both distribution and veridicality.

\section*{Motivation}

Relationship may be mediated by non-contentful properties of contentful events Kratzer 2006; Hacquard 2006; Moulton 2009; Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.

\section*{Approach}

Use Uniform Manifold Approximation and Projection (UMAP) to visualize the topological structure of the distribution and veridicality data. McInnes and Healy 2018

\section*{Exploratory analysis}


\section*{Exploratory analysis}

stun
startle
and

\section*{Exploratory analysis}


\section*{Interim discussion}

Finding
Fine-grained clusters like verb classes among 'action’ verbs

\section*{Interim discussion}

\section*{Finding}

Fine-grained clusters like verb classes among 'action' verbs

\section*{Question}

What could explain distributional properties like responsivity?

\section*{Interim discussion}

\section*{Finding}

Fine-grained clusters like verb classes among 'action' verbs

\section*{Question}

What could explain distributional properties like responsivity?

\section*{Possibility 1}

Verb class-specific rules (possibly sensitive to content-dependent properties, like veridicality and factivity).

\section*{Interim discussion}

\section*{Finding}

Fine-grained clusters like verb classes among 'action' verbs

\section*{Question}

What could explain distributional properties like responsivity?

\section*{Possibility 1}

Verb class-specific rules (possibly sensitive to content-dependent properties, like veridicality and factivity).

\section*{Possibility 2}

More abstract semantic properties relevant to thematic roles - e.g. affectedness, existence, creation/destruction, ...

Case study: decision predicates

\section*{Why decision predicates?}

Observation
Decision predicates are one of multiple classes of responsive verbs that are not veridical (Beck and Rullmann, 1999; Lahiri, 2002; Egere, 2008)

\section*{Why decision predicates?}

Observation
Decision predicates are one of multiple classes of responsive verbs that are not veridical (Beck and Rullmann, 1999; Lahiri, 2002; Egere, 2008)
(18) a. Jo told Mo that Bo was alive. \(\nrightarrow\) Bo was alive.
b. Jo told Mo whether Bo was alive.

\section*{Why decision predicates?}

Observation
Decision predicates are one of multiple classes of responsive verbs that are not veridical (Beck and Rullman, 1999; Lahiri, 202z; Egre, 2008)
(18) a. Jo told Mo that Bo was alive. \(\nrightarrow\) Bo was alive.
b. Jo told Mo whether Bo was alive.
(19) a. Jo and Mo agreed that Bo was alive. \(\nrightarrow\) Bo was alive.
b. Jo and Mo agreed on whether Bo was alive.

\section*{Why decision predicates?}

Observation
Decision predicates are one of multiple classes of responsive verbs that are not veridical (Beck and Rullman, 1999; Lahiri, 202z; Egre, 2008)
(18) a. Jo told Mo that Bo was alive. \(\nrightarrow\) Bo was alive.
b. Jo told Mo whether Bo was alive.
(19) a. Jo and Mo agreed that Bo was alive. \(\nrightarrow\) Bo was alive.
b. Jo and Mo agreed on whether Bo was alive.
(20) a. Jo decided \(\mathrm{PRO}_{i}\) to leave. \(\nrightarrow \mathrm{Jo}\) will leave.
b. Jo \({ }_{i}\) decided whether Pro; to leave.

\section*{Why decision predicates?}

Decide is part of a nontrivial class of Change-of-mental-state (CoMS) responsives not captured by standard theories of responsivity
(21) decide, judge, estimate, determine, assess, conclude, resolve, choose, assess, evaluate, appraise, rate, select, infer, diagnose, opt, elect

\section*{Why decision predicates?}

Decide is part of a nontrivial class of Change-of-mental-state (CoMS) responsives not captured by standard theories of responsivity
(21) decide, judge, estimate, determine, assess, conclude, resolve, choose, assess, evaluate, appraise, rate, select, infer, diagnose, opt, elect

\section*{Minimal pair}

Change-of-mental-state (CoMS) decide v. stative intend
(22) a. Jo decided (whether) to go out.
b. Jo intended (*whether) to go out.

\section*{Why decision predicates?}

Overarching claim
Responsivity is licensed by CoMS

\section*{Why decision predicates?}

Overarching claim
Responsivity is licensed by CoMS
- decide is Q -agnostic because it is CoMS

\section*{Why decision predicates?}

Overarching claim
Responsivity is licensed by CoMS
- decide is Q -agnostic because it is CoMS
- intend is Q-rejecting because it is not (and because no other lexical property of intend licenses Q -agnosticism)

\section*{Why decision predicates?}

Overarching claim
Responsivity is licensed by CoMS
- decide is Q -agnostic because it is CoMS
- intend is Q-rejecting because it is not (and because no other lexical property of intend licenses Q-agnosticism)

Argument outline
1. Interpretation of decision predicates with embedded questions is not captured by standing theories.

\section*{Why decision predicates?}

Overarching claim
Responsivity is licensed by CoMS
- decide is Q -agnostic because it is CoMS
- intend is Q-rejecting because it is not (and because no other lexical property of intend licenses Q-agnosticism)

Argument outline
1. Interpretation of decision predicates with embedded questions is not captured by standing theories.
2. Capturing the interpretations of decision predicates must make explicit reference to the structure of selection events.

\section*{Two notions of veridicality}

P-veridicality
\(A\) verb \(V\) is \((P-)\) veridical iff \(\forall x, p: \llbracket V \rrbracket^{w_{\odot}}(x, p) \rightarrow p\left(w_{\odot}\right)\)
(23) Jo knew that Bo was alive \(\rightarrow\) Bo was alive

\section*{Two notions of veridicality}

P -veridicality
\(A\) verb \(V\) is \((P-)\) veridical iff \(\forall x, p: \llbracket V \rrbracket^{w_{\odot}}(x, p) \rightarrow p\left(w_{\odot}\right)\)
(23) Jo knew that Bo was alive \(\rightarrow\) Bo was alive

Q-veridicality
A verb \(V\) is \(Q\)-veridical iff \(\forall x, Q: \llbracket V \rrbracket^{w_{\varrho}}(x, Q) \rightarrow \llbracket V \rrbracket^{w_{\odot}}\left(x, \operatorname{ANS}_{W_{\odot}}(Q)\right)\)

\section*{Two notions of veridicality}

P -veridicality
\(A\) verb \(V\) is ( \(P-\) ) veridical iff \(\forall x, p: \llbracket V \rrbracket^{w_{\odot}}(x, p) \rightarrow p\left(w_{\varrho}\right)\)
(23) Jo knew that Bo was alive \(\rightarrow\) Bo was alive

Q-veridicality
A verb \(V\) is \(Q\)-veridical iff \(\forall x, Q: \llbracket V \rrbracket^{w_{\odot}}(x, Q) \rightarrow \llbracket V \rrbracket^{w_{\odot}}\left(x, \operatorname{ANS}_{W_{\odot}}(Q)\right)\)
(24) Jo knew whether Bo was alive
\(\rightarrow\) Jo knew the true answer to "was Bo alive?"

A verb \(V\) is Q -nonveridical if it is not Q -veridical.

\section*{Veridicality and interpretation}

Spector and Egré's (2015) observation
High correlation between Q-veridicality and P-veridicality
Spector and Egré’s (2015) proposal
Q-veridicality is derived from P-veridicality

\section*{Veridicality and interpretation}

\title{
Spector and Egré’s (2015) formalization \\ When a Q-agnostic predicate takes a question \(Q\), it relates an attitude holder to some possible (complete) answer to \(Q\)
}
(cf. Hamblin, 1973; Groenendijk and Stokhof, 1984; Beck and Rullmann, 1999; Lahiri, 2002)

\section*{Veridicality and interpretation}

Spector and Egré's (2015) formalization
When a Q-agnostic predicate takes a question \(Q\), it relates an attitude holder to some possible (complete) answer to \(Q\)
(cf. Hamblin, 1973; Groenendijk and Stokhof, 1984; Beck and Rullmann, 1999; Lahiri, 2002)
\[
\forall x: \llbracket V \rrbracket^{W_{e}}(x, Q) \rightarrow \exists p \in Q: \llbracket V \rrbracket^{W_{e}}(x, p)
\]

\section*{Veridicality and interpretation}

Spector and Egré's (2015) formalization
When a Q-agnostic predicate takes a question \(Q\), it relates an attitude holder to some possible (complete) answer to \(Q\)
(cf. Hamblin, 1973; Groenendijk and Stokhof, 1984; Beck and Rullmann, 1999; Lahiri, 2002)
\[
\forall x: \llbracket V \rrbracket^{w_{e}}(x, Q) \rightarrow \exists p \in Q: \llbracket V \rrbracket^{w_{e}}(x, p)
\]

But if a verb \(V\) is \(P\)-veridical, then...

\section*{Veridicality and interpretation}

\section*{Spector and Egré’s (2015) formalization}

When a Q-agnostic predicate takes a question \(Q\), it relates an attitude holder to some possible (complete) answer to \(Q\)
(cf. Hamblin, 1973; Groenendijk and Stokhof, 1984; Beck and Rullmann, 1999; Lahiri, 2002)
\[
\forall x: \llbracket V \rrbracket^{w_{\odot}}(x, Q) \rightarrow \exists p \in Q: \llbracket V \rrbracket^{w_{e}}(x, p)
\]

But if a verb \(V\) is \(P\)-veridical, then...
\[
\left[\begin{array}{ll}
\forall x, p^{\prime}: & \llbracket V \rrbracket_{w_{\odot}}\left(x, p^{\prime}\right) \rightarrow p^{\prime}\left(w_{\odot}\right) \wedge \\
\exists p \in Q: & \llbracket \mathbb{V} \rrbracket^{w_{\varrho}}(x, p)
\end{array}\right] \Longrightarrow \exists p^{\prime \prime} \in Q: p^{\prime \prime}\left(w_{\varrho}\right) \wedge \llbracket V \rrbracket^{w_{\varrho}}\left(x, p^{\prime \prime}\right)
\]

\section*{Moving forward}

\section*{System}

Adopt Spector and Egré's proposal that embedded interrogatives denote possible complete answers (exhaustified Hamblin Qs)

\section*{Moving forward}

\section*{System}

Adopt Spector and Egré's proposal that embedded interrogatives denote possible complete answers (exhaustified Hamblin Qs)

Goal
Some explanation of Q-agnostic predicates that are neither P-veridical nor Q-veridical - e.g. CoMS predicates

\section*{Possible v. true answers}

Hamblin (1973) questions
Sets of possible answers (ff. Beck and Rullmann, 199; Spector and Egre, 2015)

\section*{Possible v. true answers}

Hamblin (1973) questions
Sets of possible answers (cf. Beck and Rulmann, 199; Spector and Egre, 2015)
(25) a. \(\llbracket\) whether Jo left \(\rrbracket=\lambda p . p \in\{\llbracket J\) left \(\rrbracket, \neg \llbracket J\) left \(\rrbracket\}\)
b. \(\llbracket w h o l e f t \rrbracket=\lambda p . \exists x: p=\lambda w . \llbracket\) left \(\rrbracket^{w}(x)\)

\section*{Possible v. true answers}

Hamblin (1973) questions
Sets of possible answers (cf. Beck and Rulmann, 199; Spector and Egre, 2015)
(25) a. \(\llbracket\) whether Jo left \(\rrbracket=\lambda p . p \in\{\llbracket J\) left \(\rrbracket, ~ \neg \llbracket J\) left \(\rrbracket\}\)
b. \(\llbracket w h o l e f t \rrbracket=\lambda p . \exists x: p=\lambda w . \llbracket\) left \(\rrbracket^{w}(x)\)

Karttunen (1977b) questions
Sets of true answers (c. Groenendijik and Stokhof, 1984; Heim, 1994)
(26) a. \(\llbracket\) whether Jo left \(\rrbracket=\lambda p . p\left(w_{\odot}\right) \wedge p \in\{\llbracket J\) left \(\rrbracket, \neg \llbracket \mathrm{Joleft} \rrbracket\}\)
b. \(\llbracket w h o l e f t \rrbracket=\lambda p . p\left(w_{\odot}\right) \wedge \exists x: p=\lambda w . \llbracket\) left \(\rrbracket^{w}(x)\)

\section*{The proposal}

Plan
Show that...
1. ...Spector and Egré's proposal makes no wrong predictions about CoMS verbs, but it undergenerates entailments
2. ...to strengthen their predictions without overgenerating, reference to CoMS is necessary

\section*{Two contexts}

\section*{Selecting Alternating}

\section*{Two contexts}

\section*{Selecting Alternating}
decide to

\section*{Two contexts}
\begin{tabular}{rrr}
\hline & Selecting & Alternating \\
\hline decide to & \\
decide whether to & \\
\hline
\end{tabular}

\section*{Context 1: selecting}

Selecting contexts
DECIDER selects an intention from set of possible intentions

\section*{Context 1: selecting}

\section*{Selecting contexts}

DECIDER selects an intention from set of possible intentions
(27) a. Before 3pm, Jo was considering whether to leave. b. \(\rightarrow\) It's false that Jo intended to leave before 3 pm .
c. \(\rightarrow\) It's false that Jo intended not to leave before.
(28) At 3pm, Jo decided to leave at 5pm.


\section*{Context 2: alternating}

\section*{Alternating contexts}

DECIDER changes intention from mutually exclusive intention
(29) At 3pm, Jo decided to leave at 5pm.
(30) At 4 pm , Jo changed her mind and decided not to leave.


\section*{Two contexts}
\begin{tabular}{rcc}
\hline & Selecting & Alternating \\
\hline decide to & \(\checkmark\) & \(\checkmark\) \\
decide whether to & & \\
\hline
\end{tabular}

\section*{Selecting v. switching contexts}

\section*{Possibility}

Given only the (prototypical) selecting contexts...
(31) At 3 pm , Jo decided to leave at 5 pm .
a. \(\rightarrow\) Jo intended to leave after 3 pm .
b. \(\xrightarrow{?}\) It's F that Jo intended to leave before 4 pm
c. \(\xrightarrow{?}\) It's F that Jo intended not to leave before 4 pm
\(\mathrm{DECISION}_{1}\)
\begin{tabular}{l|l} 
& \\
\hline\(\left\{\begin{array}{c}\text { INTEND } p \\
\text { INTEND } \neg p\end{array}\right\}\)
\end{tabular}\(\quad\) INTEND \(p\)

\section*{Selecting v. switching contexts}

\section*{Conclusion}

The availability of alternating contexts suggests...
(32) At 4 pm , Jo decided not to leave at 5pm.
a. \(\rightarrow\) Jo intended not to leave after 4 pm .
b. \(\rightarrow\) It's F that Jo intended to leave before 4 pm
c. \(\nrightarrow\) It's F that Jo intended not to leave before 4 pm


\section*{An initial try}

\section*{A CoMS denotation}

Suggests a very straightforward CoMS denotation for decide to (simplified to capture just entailments of interest)
(33) \(\llbracket\) decide \(S \rrbracket^{t}=\lambda x . \neg \operatorname{INTEND}(x, \llbracket S \rrbracket,<t) \wedge \operatorname{INTEND}(x, \llbracket S \rrbracket, \geq t)\)

\section*{Question embedding and CoMS}

Question
What predictions does Spector and Egré's (2015) proposal make?
(34) Jo decided whether to leave.

Answer 1
Predicts everything correctly for post-states
(35) Either Jo intended to leave or she intended not to leave.

\section*{Question embedding and CoS}

\section*{Question}

What predictions does Spector and Egré's (2015) proposal make?
(36) At 4 pm , Jo decided whether to leave at 5pm.

Answer 2
For pre-states, where it makes predictions, they are correct

\section*{Question embedding and CoS}

\section*{Question}

What predictions does Spector and Egré's (2015) proposal make?
(36) At 4pm, Jo decided whether to leave at 5pm.

Answer 2
For pre-states, where it makes predictions, they are correct
(37) Before 4 pm , either it's false that Jo decided to leave at 5 pm or it's false that she decided not to leave at 5pm.

\section*{Question embedding and CoS}

\section*{Question}

What predictions does Spector and Egré's (2015) proposal make?
(36) At 4pm, Jo decided whether to leave at 5pm.

Answer 2
For pre-states, where it makes predictions, they are correct
(37) Before 4 pm , either it's false that Jo decided to leave at 5 pm or it's false that she decided not to leave at 5pm.
(38) \(\exists p \in Q: \neg \operatorname{NTEND}(x, p,<t) \wedge \operatorname{INTEND}(x, p, \geq t)\)

\section*{Question embedding and CoS}

\section*{Question}

What predictions does Spector and Egré's (2015) proposal make?
(36) At 4pm, Jo decided whether to leave at 5pm.

Answer 2
For pre-states, where it makes predictions, they are correct
(37) Before 4 pm , either it's false that Jo decided to leave at 5 pm or it's false that she decided not to leave at 5pm.
(38) \(\exists p \in Q: \neg \operatorname{NTEND}(x, p,<t) \wedge \operatorname{INTEND}(x, p, \geq t)\)

But this prediction is too weak

\section*{Question embedding and CoMS}

Observation
While decide to is licensed in selecting and alternating contexts, decide whether to is only licensed in selective contexts
(39) a. Before 3, Jo intended neither to leave nor not to.
b. At 3, Jo decided whether to leave.
(40) a. Before 4, Jo intended either to leave or not to. b\#At 4pm, Jo decided whether to leave at 5pm

Intuition
(40-b) \(\rightarrow\) Jo have no intention with respect to leaving before 4 pm

\section*{Two contexts}
\begin{tabular}{rcc}
\hline & Selecting & Alternating \\
\hline decide to & \(\checkmark\) & \(\checkmark\) \\
decide whether to & & \\
\hline
\end{tabular}

\section*{Two contexts}
\begin{tabular}{rcc}
\hline & Selecting & Alternating \\
\hline decide to & \(\checkmark\) & \(\checkmark\) \\
decide whether to & \(\checkmark\) & \(\#\) \\
\hline
\end{tabular}

\section*{Question embedding and CoMS}

\section*{Consequence}

We need (42), rather than (41) for CoMS embedded questions.
(41) \(\exists p \in Q: \neg \operatorname{lntend}(x, p,<t) \wedge \operatorname{INTEND}(x, p, \geq t)\)
(42) \(\forall p \in Q: \neg \operatorname{lNTEND}(x, p,<t) \wedge \exists p \in Q: \operatorname{INTEND}(x, p, \geq t)\)

Observation
The pre-state conjunct is equivalent to the negation of the post-state conjunct (modulo tense)
(43) \(\forall p \in Q: \neg \operatorname{lntend}(x, p) \leftrightarrow \neg \exists p \in Q: \operatorname{INTEND}(x, p)\)

\section*{Question embedding and CoMS}

Idea
Apply Spector and Egré's (2015) proposal to each conjunct
(44) \(Q=\llbracket\) whether \(\mathrm{S} \rrbracket=\{\llbracket S \rrbracket, \neg \llbracket S \rrbracket\}=\{p, \neg p\}\)
(45) \(\llbracket\) decide whether \(S \rrbracket^{t}=\lambda x . \neg \operatorname{INTEND}(x, Q,<t) \wedge \operatorname{INTEND}(x, Q, \geq t)\)
(46) \(\llbracket\) decide whether \(S \rrbracket^{t}=\lambda x . \neg \exists p \in \mathrm{Q}: \operatorname{INTEND}(x, p,<t) \wedge\)
\[
\exists p \in Q: \operatorname{INTEND}(x, p, \geq t)
\]

\section*{Question embedding and CoMS}

\section*{Problem}

Mysterious why we shouldn't be able to do this for intend
(47) a. Jo hasn't decided whether to go out. b.Jo didn't intend whether to go out.
\[
\begin{aligned}
\llbracket \text { intend whether } \mathrm{S} \rrbracket & =\lambda x \cdot \operatorname{INTEND}(x, \llbracket \text { whether } \mathrm{S} \rrbracket) \\
& =\lambda x \cdot \exists p \in \llbracket \text { whether } \mathrm{S} \rrbracket: \operatorname{INTEND}(x, p)
\end{aligned}
\]

\section*{Question embedding and CoS}

Observation
Problem doesn't arise for CoMS veridicals

\section*{Question embedding and CoS}

Observation
Problem doesn't arise for CoMS veridicals
(48) a. Jo doesn't figure out (whether) Bo left.
b. Jo doesn't know (whether) Bo left.

\section*{Question embedding and CoS}

Observation
Problem doesn't arise for CoMS veridicals
(48) a. Jo doesn't figure out (whether) Bo left.
b. Jo doesn't know (whether) Bo left.
\[
\begin{aligned}
\llbracket \text { know whether } \mathrm{S} \rrbracket & =\lambda x \cdot \operatorname{kNow}(x, \llbracket \text { whether } \mathrm{S} \rrbracket) \\
& =\lambda x . \exists p \in \llbracket \text { whether } \mathbb{} \rrbracket: \operatorname{KNOW}(x, p)
\end{aligned}
\]

\section*{Question embedding and CoMS}

Upshot
Only target certain event types (e.g. intentions) in CoMS structure

\section*{Question embedding and CoMS}

Upshot
Only target certain event types (e.g. intentions) in CoMS structure
Proposal
Make interrogative-taking dependent on CoMS

\section*{Implementation}

Minimal requirements
For decide to, something of the form in (49)
(49) \(\ldots \neg \mid \operatorname{NTEND}(x, \llbracket \mathrm{~S} \rrbracket,<t) \wedge \operatorname{INTEND}(x, \llbracket S \rrbracket, \geq t)\)

For decide whether to, something of the form in (50)
(50) \(\ldots \forall p \in Q: \neg \operatorname{INTEND}(x, p,<t) \wedge \exists p \in Q: \operatorname{Intend}(x, p, \geq t)\)

\section*{Implementation}

Core idea
Q-agnostic predicates undergo a regular polysemy

Lexical abstraction

Polysemy rules

Lexicon


\section*{Implementation}

Core idea
Q-agnostic predicates undergo a regular polysemy

Lexical abstraction

Polysemy rules

Lexicon


\section*{George's (2011) Twin Relations Theory}

Goal
A polysemy approach for Q-agnostics

Elementary relations

Lexical templating

Lexicon


\section*{Lexical templates}

Proposition-taking variant passes \(p\) to elementary relations
\[
R_{\text {PROP }} \equiv \lambda w \cdot \lambda x \cdot \lambda p \cdot R_{\forall}(x, p, w) \wedge R_{\exists}(x, p, w)
\]

Question-taking variant passes \(p \in Q\) to elementary relations
\[
R_{\text {Ques }} \equiv \lambda w \cdot \lambda x \cdot \lambda Q \cdot \forall p \in Q: R_{\forall}(x, p, w) \wedge \exists p \in Q: R_{\exists}(x, p, w)
\]

Veridicality arises from \(R_{\forall}\)
\[
\operatorname{kNow}_{\forall}(x, p, w) \equiv \operatorname{BeLIEVE}(x, p, w) \rightarrow p(w)
\]
\(R_{\text {PROP }}\) corresponds to the form we need for decide to, and
\(R_{\text {Ques }}\) corresponds to the form we need for decide whether to
(51) DECIDE \(_{\forall}=\neg\) INTEND
(52) \(\mathrm{DECIDE}_{\exists}=\) INTEND
\(R_{\forall}=R_{\text {pre }}\) characterizes pre-states
\(R_{\exists}=R_{\text {post }}\) charatcerizes post-states

\section*{Basic approach}

Hacquard's (2010) neo-Davidsonian event content approach
(cf. Kratzer, 2006; Moulton, 2009; Bogal-Allbritten, 2016)

\section*{Basic approach}

Hacquard's (2010) neo-Davidsonian event content approach
(cf. Kratzer, 2006; Moulton, 2009; Bogal-Allbritten, 2016)
(53) \(\operatorname{con}(e)=\{w: w\) is compatible with the contents of \(e\}\)
(54) \(\llbracket[V S]_{\vee P} \rrbracket=\lambda e \cdot P_{V}(e) \wedge \forall w \in \operatorname{CON}(e): \llbracket S \rrbracket(w)\)

\section*{Basic approach}

Hacquard's (2010) neo-Davidsonian event content approach
(cf. Kratzer, 2006; Moulton, 2009; Bogal-Allbritten, 2016)
(53) \(\operatorname{con}(e)=\{w: w\) is compatible with the contents of \(e\}\)
(54) \(\llbracket[\mathrm{V} S]_{V P} \rrbracket=\lambda e \cdot P_{V}(e) \wedge \forall w \in \operatorname{CON}(e): \llbracket S \rrbracket(w)\)

Champollion's (2015) verb-as-event-quantifier approach
(55) \(\llbracket \mathrm{VP} \rrbracket=\lambda f . \exists e: f(e) \wedge \ldots\)

\section*{Basic approach}

Hacquard's (2010) neo-Davidsonian event content approach
(cf. Kratzer, 2006; Moulton, 2009; Bogal-Allbritten, 2016)
(53) \(\operatorname{con}(e)=\{w: w\) is compatible with the contents of \(e\}\)
(54) \(\llbracket[\mathrm{V} S]_{V P} \rrbracket=\lambda e \cdot P_{V}(e) \wedge \forall w \in \operatorname{CON}(e): \llbracket S \rrbracket(w)\)

Champollion's (2015) verb-as-event-quantifier approach
(55) \(\llbracket \mathrm{VP} \rrbracket=\lambda f . \exists e: f(e) \wedge \ldots\)

\section*{Attitude denotations}
(56) \(\llbracket[\vee S]_{V P} \rrbracket=\lambda f \cdot \exists e: P_{\vee}(e) \wedge f(e) \wedge \forall w \in \operatorname{con}(e): \llbracket S \rrbracket(w)\)

\section*{Implementation}
\[
e_{\text {pre }} \longrightarrow e_{\text {post }}
\]

\section*{Implementation}


\section*{Implementation}


\section*{Defining decision}

Define decision to relate a pre-state and a post-state
(57) \(\operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \equiv e\) is a decision with pre-state \(e_{\text {pre }}\) and post-state \(e_{\text {post }}\)

Define constraint on inquisitive pre-state
(58) \(R_{\text {pre }}(e, p)=\neg \forall w \in \operatorname{con}(e): p(w)\)

Define constraint on informative post-state
(59) \(R_{\text {post }}(e, p)=\forall w \in \operatorname{con}(e): p(w)\)

\section*{Defining lexical templates}

As expected for a change-of-state verb
(60) \(\forall e, p: R_{\text {pre }}(e, p) \longleftrightarrow \neg R_{\text {post }}(e, p)\)

\section*{Defining lexical templates}

As expected for a change-of-state verb
(60) \(\forall e, p: R_{\text {pre }}(e, p) \longleftrightarrow \neg R_{\text {post }}(e, p)\)

Extend George's lexical templates to events
(61) a. \(\llbracket\) decide \(_{\text {Prop }} \rrbracket=R_{\text {Prop }}(\) DECISION \()=(62-\mathrm{a})\)
b. \(\llbracket\) decide \(_{\text {Ques }} \rrbracket=R_{\text {Ques }}(\) DECISION \()=(62-b)\)

\section*{Defining lexical templates}

As expected for a change-of-state verb
(60) \(\forall e, p: R_{\text {pre }}(e, p) \longleftrightarrow \neg R_{\text {post }}(e, p)\)

Extend George's lexical templates to events
(61) a. \(\llbracket\) decide \(_{\text {Prop }} \rrbracket=R_{\text {PROP }}(\) DECISION \()=(62-\mathrm{a})\)
b. \(\llbracket\) decide \(_{\text {Ques }} \rrbracket=R_{\text {Ques }}(\) DECISION \()=(62-\mathrm{b})\)
(62) a. \(\lambda\) p. \(\lambda f . \exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge f(e)\)

\section*{Defining lexical templates}

As expected for a change-of-state verb
(60) \(\forall e, p: R_{\text {pre }}(e, p) \longleftrightarrow \neg R_{\text {post }}(e, p)\)

Extend George's lexical templates to events
(61) a. \(\llbracket\) decide \(_{\text {Prop }} \rrbracket=R_{\text {PROP }}(\) DECISION \()=(62-\mathrm{a})\)
b. \(\llbracket\) decide \(_{\text {Ques }} \rrbracket=R_{\text {Ques }}(\) DECISION \()=(62-\mathrm{b})\)
(62) a. \(\lambda\) p. \(\lambda f . \exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge f(e)\)
\[
\wedge R_{\text {pre }}(p)\left(e_{\text {pre }}\right) \wedge R_{\text {post }}(p)\left(e_{\text {post }}\right)
\]

\section*{Defining lexical templates}

As expected for a change-of-state verb
(60) \(\forall e, p: R_{\text {pre }}(e, p) \longleftrightarrow \neg R_{\text {post }}(e, p)\)

Extend George's lexical templates to events
(61) a. \(\llbracket\) decide \(_{\text {Prop }} \rrbracket=R_{\text {PROP }}(\) DECISION \()=(62-\mathrm{a})\)
b. \(\llbracket\) decide \(_{\text {Ques }} \rrbracket=R_{\text {Ques }}(\) DECISION \()=(62-\mathrm{b})\)
(62) a. \(\lambda\) p. \(\lambda f . \exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge f(e)\) \(\wedge R_{\text {pre }}(p)\left(e_{\text {pre }}\right) \wedge R_{\text {post }}(p)\left(e_{\text {post }}\right)\)
b. \(\lambda Q \cdot \lambda f \cdot \exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge f(e)\)

\section*{Defining lexical templates}

As expected for a change-of-state verb
(60) \(\forall e, p: R_{\text {pre }}(e, p) \longleftrightarrow \neg R_{\text {post }}(e, p)\)

Extend George's lexical templates to events
(61) a. \(\llbracket\) decide \(_{\text {Prop }} \rrbracket=R_{\text {PROP }}(\) DECISION \()=(62-\mathrm{a})\)
b. \(\llbracket\) decide \(_{\text {ques }} \rrbracket=\) Reues \((\) DECISION \()=(62-\mathrm{b})\)
(62) a. \(\lambda\) p. \(\lambda f . \exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge f(e)\) \(\wedge R_{\text {pre }}(p)\left(e_{\text {pre }}\right) \wedge R_{\text {post }}(p)\left(e_{\text {post }}\right)\)
b. \(\lambda Q \cdot \lambda f \cdot \exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge f(e)\)
\[
\begin{aligned}
& \wedge \forall p \in Q: R_{\text {pre }}(p)\left(e_{\text {pre }}\right) \\
& \wedge \exists p \in Q: R_{\text {post }}(p)\left(e_{\text {post }}\right)
\end{aligned}
\]

\section*{Full denotations}

When decide takes a declarative...
\(\llbracket J o\) decide \({ }_{\text {prop }} \mathrm{S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)

\section*{Full denotations}

When decide takes a declarative...
\(\llbracket J o\) decide \(e_{\text {prop }} \mathrm{S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\wedge \neg \forall w \in \operatorname{con}\left(e_{\text {pre }}\right): \llbracket \ \rrbracket(w)
\]

\section*{Full denotations}

When decide takes a declarative...
\(\llbracket J o\) decide \(_{\text {prop }} S \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\begin{aligned}
& \wedge \neg \forall w \in \operatorname{con}\left(e_{\text {pre }}\right): \llbracket \mathbb{S} \rrbracket(w) \\
& \wedge \forall w \in \cos \left(e_{\text {post }}\right): \llbracket \mathbb{S} \rrbracket(w)
\end{aligned}
\]

\section*{Full denotations}

When decide takes a declarative...
\(\llbracket J \mathrm{o}\) decide \({ }_{\text {prop }} \mathrm{S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\begin{aligned}
& \wedge \neg \forall w \in \operatorname{con}\left(e_{\text {pre }}\right): \llbracket \mathbb{S} \rrbracket(w) \\
& \wedge \forall w \in \cos \left(e_{\text {post }}\right): \llbracket \mathbb{S} \rrbracket(w)
\end{aligned}
\]

When decide takes an interrogative...
\(\llbracket J\) decide \({ }_{\text {oues }} ? \mathrm{~S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)

\section*{Full denotations}

When decide takes a declarative...
\(\llbracket J \mathrm{odecide} \mathrm{Prop} \mathrm{S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\begin{aligned}
& \wedge \neg \forall w \in \operatorname{con}\left(e_{\text {pre }}\right): \llbracket \mathbb{S} \rrbracket(w) \\
& \wedge \forall w \in \operatorname{con}\left(e_{\text {post }}\right): \llbracket \mathbb{S} \rrbracket(w)
\end{aligned}
\]

When decide takes an interrogative...
\(\llbracket J o\) decide \(_{\text {oues }} ? \mathrm{~S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\wedge \forall p \in \llbracket ? \$ \rrbracket: \neg \forall w \in \operatorname{CoN}\left(e_{\text {pre }}\right): p(w)
\]

\section*{Full denotations}

When decide takes a declarative...
\(\llbracket J o\) decide \({ }_{\text {prop }} \mathrm{S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\begin{aligned}
& \wedge \neg \forall w \in \operatorname{con}\left(e_{\text {pre }}\right): \llbracket \mathbb{S} \rrbracket(w) \\
& \wedge \forall w \in \cos \left(e_{\text {post }}\right): \llbracket \mathbb{S} \rrbracket(w)
\end{aligned}
\]

When decide takes an interrogative...
\(\llbracket J\) decide \({ }_{\text {ques }} ? \mathrm{~S} \rrbracket=\exists e, e_{\text {pre }}, e_{\text {post }}: \operatorname{DECISION}\left(e, e_{\text {pre }}, e_{\text {post }}\right) \wedge \operatorname{AGENT}(j, e)\)
\[
\begin{aligned}
& \wedge \forall p \in \llbracket ? S \rrbracket: \neg \forall w \in \operatorname{CON}\left(e_{\text {pre }}\right): p(w) \\
& \wedge \exists p \in \llbracket ? S \rrbracket: \forall w \in \operatorname{CON}\left(e_{\text {post }}\right): p(w)
\end{aligned}
\]

\section*{Embedded modality}

\section*{Remaining question}

Where does the intention entailment come from?

\section*{Embedded modality}

\section*{Remaining question}

Where does the intention entailment come from?
Possible answer
Decision pre-states just are intentional states

\section*{Embedded modality}

\section*{Evidence}

Always(?) intention for infinitivals
(63) Jo \{determined, decided, chose\} whether to leave.

\section*{Embedded modality}

\section*{Evidence}

Always(?) intention for infinitivals
(63) Jo \{determined, decided, chose\} whether to leave.

Otherwise dependent on content of finite complement
(64) a. Jo decided whether she would leave.
b. Jo decided whether Bo could leave.

\section*{Embedded modality}

\section*{Remaining question}

Where does the intention entailment come from?
Possible answer
Decision pre-states just are intentional states
Answer
Modality in the embedded clause (Bhatt, 1999; rana, 2012; Wurmbrand, 2014; White, 2044)

\section*{Wrapping up}

\section*{Question}

Why would pre-state entailments be like veridicality entailments?

\section*{Wrapping up}

\section*{Question}

Why would pre-state entailments be like veridicality entailments?
Relevant observation
Pre-state entailments are generally backgrounded (cf. start, stop)
(Roberts, 1996; Simons, 2001; Abusch, 2002; Simons et al., 2010; Abusch, 2010; Abrusán, 2011; Romoli, 2011; Anand and Hacquard, 2014)

\section*{A generalization}

Tentative generalization
No monomorphemic verb characterizes a relation between an informative pre-state and an inquisitive post-state (*undecide)

\section*{A generalization}

Tentative generalization
No monomorphemic verb characterizes a relation between an informative pre-state and an inquisitive post-state (*undecide) Possible exception: forget

\section*{A generalization}

Tentative generalization
No monomorphemic verb characterizes a relation between an informative pre-state and an inquisitive post-state (*undecide)

Possible exception: forget
Relevance
Suggests an asymmetry between pre-states and post-states that we don't currently encode

\section*{A generalization}

Tentative generalization
No monomorphemic verb characterizes a relation between an
informative pre-state and an inquisitive post-state (*undecide)
Possible exception: forget
Relevance
Suggests an asymmetry between pre-states and post-states that we don't currently encode

Suggestion
Whatever gives rise to pre-state backgrounding for other CoS predicates also gives rise to this asymmetry

\section*{Future directions}

\section*{Direction 1}

Reducing the relationship between veridicality and Q-agnosticism to a relationship between CoMS and Q-agnosticism

\section*{Future directions}

\section*{Direction 1}

Reducing the relationship between veridicality and Q -agnosticism to a relationship between CoMS and Q-agnosticism

Direction 2
Explaining remaining nonveridicals in terms of event structure

\section*{Reducing to CoMS}

\section*{Observation}

Many verbal veridicals besides the stative know are CoMS
remember, forget, discover, find out, figure out, realize, recognize, ...

\section*{Reducing to CoMS}

\section*{Observation}

Many verbal veridicals besides the stative know are CoMS
remember, forget, discover, find out, figure out, realize, recognize, ...
Timid reduction
Most verbal veridicals explained by CoMS; know stipulated

\section*{Reducing to CoMS}

\section*{Observation}

Many verbal veridicals besides the stative know are CoMS
remember, forget, discover, find out, figure out, realize, recognize, ...
Timid reduction
Most verbal veridicals explained by CoMS; know stipulated
Aggressive reduction
Know has a bipartite structure involving a knowledge state (fact contents) and a belief state (proposition contents) (Kater, 2002)

Conclusion

\section*{Overarching question}

\section*{How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; Iackendoff 1972;}

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

\section*{Overarching question}

\section*{How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; Iackendoff 1972;}

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

\section*{Semantic}

Properties
\(\left[\begin{array}{cc}+ & \text { Telic } \\ - & \text { durative } \\ - & \text { Stative } \\ & \cdots\end{array}\right]\)

\section*{Overarching question}

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 1977; Iackendoff 1972;
Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993


\section*{What could matter?}

Factors claimed to affect the distribution of nominals Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

\section*{What could matter?}

Factors claimed to affect the distribution of nominals
Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

Factors claimed to affect the distribution of clauses
Sensitive to 'content-dependent' properties like representationality, preferentiality, factivity/veridicality, communicativity, etc. Bolinger 1968;
Hintikka 1975; Hooper 1975; Stalnaker 1984; Farkas 1985; Villalta 2000, 2008; Kratzer 2006; Egré 2008;
Scheffler 2009; Moulton 2009; Anand and Hacquard 2013; Rawlins 2013; Portner and Rubinstein
2013; Anand and Hacquard 2014; Spector and Egré 2015; Bogal-Allbritten 2016; Theiler et al. 2017

\section*{Overarching Hypothesis}

Hypothesis
The distribution of clauses is determined by the same semantic properties as the distribution of nouns (cf. Koenig and Davis 2001)

\section*{Overarching Hypothesis}

Hypothesis
The distribution of clauses is determined by the same semantic properties as the distribution of nouns (cf. Koenig and Davis 2001)

\section*{Not properties dependent on having propositional content}
(White and Rawlins, 2017, 2018)

\section*{Overarching Hypothesis}

Hypothesis
The distribution of clauses is determined by the same semantic properties as the distribution of nouns (cf. Koenig and Davis 2001)

\section*{Not properties dependent on having propositional content}
(White and Rawlins, 2017, 2018)

\section*{Intuition}

Predicates that take clauses characterize neo-Davidsonian
eventualities, like any other verb. (Kratzer 2006; Hacquard 2006; Moulton 2009;
Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.)

\section*{Case study}

\section*{Question}

How direct is the relationship between content-dependent properties and syntactic distribution?

\section*{Case study}

\section*{Question}

How direct is the relationship between content-dependent properties and syntactic distribution?

\section*{Focus}

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

\section*{Case study}

\section*{Question}

How direct is the relationship between content-dependent properties and syntactic distribution?

\section*{Focus}

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Claim
There is no direct relationship between factivity and veridicality (qua semantic properties) and syntactic distribution

\section*{Case study}

\section*{Question}

How direct is the relationship between content-dependent properties and syntactic distribution?

\section*{Focus}

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Claim
There is no direct relationship between factivity and veridicality (qua semantic properties) and syntactic distribution

The relationship is mediated by event structural properties.

Thanks!

\section*{Acknowledgements and resources}

For discussion of this work, thanks go to audiences at JHU, UR, UMD, SuB 21, NELS 2017, and NELS 2018 as well as Kyle Rawlins, Ben Van Durme, Valentine Hacquard, and Rachel Rudinger.

Funded by NSF-BCS-1748969/1749025 The MegaAttitude Project: Investigating selection and polysemy at the scale of the lexicon and DARPA AIDA.

Data available at


\section*{References i}

Márta Abrusán. Predicting the presuppositions of soft triggers. Linguistics and Philosophy, 34(6):491-535, 2011.

Dorit Abusch. Lexical alternatives as a source of pragmatic presuppositions.
Semantics and Linguistic Theory, 12:1-19, 2002.
Dorit Abusch. Presupposition triggering from alternatives. Journal of Semantics, 27(1): 37-80, 2010.

Alan Agresti. Categorical Data Analysis. John Wiley \& Sons, 2014. ISBN 1-118-71085-1.
Pranav Anand and Valentine Hacquard. Epistemics and attitudes. Semantics and Pragmatics, 6(8):1-59, 2013.

Pranav Anand and Valentine Hacquard. Factivity, belief and discourse. In Luka Crnič and Uli Sauerland, editors, The Art and Craft of Semantics: A Festschrift for Irene Heim, volume 1, pages 69-90. MIT Working Papers in Linguistics, Cambridge, MA, 2014.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. The WaCky wide web: a collection of very large linguistically processed web-crawled corpora. Language resources and evaluation, 43(3):209-226, 2009.

\section*{References ii}

Sigrid Beck and Hotze Rullmann. A flexible approach to exhaustivity in questions. Natural Language Semantics, 7(3):249-298, 1999.
Rajesh Bhatt. Covert Modality in Non-Finite Contexts. PhD thesis, University of Pennsylvania, 1999.

Elizabeth A. Bogal-Allbritten. Building Meaning in Navajo. PhD thesis, University of Massachusetts, Amherst, 2016.

Dwight Bolinger. Postposed main phrases: An English rule for the Romance subjunctive. Canadian Journal of Linguistics, 14(1):3-30, 1968.

Lucas Champollion. The interaction of compositional semantics and event semantics. Linguistics and Philosophy, 38(1):31-66, 2015.
Paul Egré. Question-embedding and factivity. Grazer Philosophische Studien, 77(1): 85-125, 2008.

Michael Yoshitaka Erlewine and Hadas Kotek. A streamlined approach to online linguistic surveys. Natural Language \& Linguistic Theory, pages 1-15, August 2015. ISSN 0167-806X, 1573-0859. doi: 10.1007/s11049-015-9305-9. URL http://link.springer.com/article/10.1007/s11049-015-9305-9.

\section*{References iii}

Donka Farkas. Intensional Descriptions and the Romance Subjunctive Mood. Garland Publishing, New York, 1985. ISBN 0-8240-5426-1.

Charles John Fillmore. The grammar of hitting and breaking. In R.A. Jacobs and P.S. Rosenbaum, editors, Readings in English Transformational Grammar, pages 120-133. Ginn, Waltham, MA, 1970.

Benjamin Ross George. Question Embedding and the Semantics of Answers. PhD thesis, University of California Los Angeles, 2011.

Thomas Angelo Grano. Control and Restructuring at the Syntax-Semantics Interface. PhD thesis, University of Chicago, 2012.
Jane Grimshaw. Complement selection and the lexicon. Linguistic Inquiry, 10(2): 279-326, 1979.

Jane Grimshaw. Argument Structure. MIT Press, Cambridge, MA, 1990. ISBN 0-262-07125-8.

Jeroen Groenendijk and Martin Stokhof. Studies on the Semantics of Questions and the Pragmatics of Answers. PhD thesis, University of Amsterdam, 1984.

Jeffrey Steven Gruber. Studies in Lexical Relations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1965.

\section*{References iv}

Valentine Hacquard. Aspects of Modality. PhD thesis, Massachusetts Institute of Technology, 2006.
Valentine Hacquard. On the event relativity of modal auxiliaries. Natural Language Semantics, 18(1):79-114, 2010.
Valentine Hacquard and Alexis Wellwood. Embedding epistemic modals in English: A corpus-based study. Semantics and Pragmatics, 5(4):1-29, 2012.
Charles L. Hamblin. Questions in Montague English. Foundations of Language, 10(1): 41-53, 1973.

Irene Heim. Interrogative semantics and Karttunen's semantics for know. In Proceedings of Israel Association for Theoretical Linguistics, volume 1, pages 128-144, 1994.

Jaakko Hintikka. Different Constructions in Terms of the Basic Epistemological Verbs: A Survey of Some Problems and Proposals. In The Intentions of Intentionality and Other New Models for Modalities, pages 1-25. Dordrecht: D. Reidel, 1975.

Joan B. Hooper. On assertive predicates. In John P. Kimball, editor, Syntax and Semantics, volume 4, pages 91-124. Academy Press, New York, 1975.

\section*{References v}

Ray Jackendoff. Semantic Interpretation in Generative Grammar. MIT Press, Cambridge, MA, 1972. ISBN 0-262-10013-4.

Lauri Karttunen. Implicative verbs. Language, pages 340-358, 1971a.
Lauri Karttunen. Some observations on factivity. Papers in Linguistics, 4(1):55-69, 1971b.

Lauri Karttunen. To doubt whether. In The CLS Book of Squibs. Chicago Linguistic Society, 1977a.
Lauri Karttunen. Syntax and semantics of questions. Linguistics and Philosophy, 1(1): 3-44, 1977b.

Lauri Karttunen. Simple and phrasal implicatives. In Proceedings of the First Joint Conference on Lexical and Computational Semantics, pages 124-131. Association for Computational Linguistics, 2012.

Lauri Karttunen, Stanley Peters, Annie Zaenen, and Cleo Condoravdi. The Chameleon-like Nature of Evaluative Adjectives. In Christopher Piñón, editor, Empirical Issues in Syntax and Semantics 10, pages 233-250. CSSP-CNRS, 2014.

\section*{References vi}

Paul Kiparsky and Carol Kiparsky. Fact. In Manfred Bierwisch and Karl Erich Heidolph, editors, Progress in Linguistics: A collection of papers, pages 143-173. Mouton, The Hague, 1970.

Jean-Pierre Koenig and Anthony R. Davis. Sublexical Modality and the Structure of Lexical Semantic Representations. Linguistics and Philosophy, 24(1):71-124, 2001. ISSN 0165-0157. URL http://www.jstor.org/stable/25001804.
Anna Korhonen, Yuval Krymolowski, and Ted Briscoe. A large subcategorization lexicon for natural language processing applications. In Proceedings of LREC, volume 6, 2006.

Angelika Kratzer. Facts: Particulars or information units? Linguistics and Philosophy, 25(5):655-670, 2002.

Angelika Kratzer. Decomposing attitude verbs, July 2006.
Utpal Lahiri. Questions and Answers in Embedded Contexts. Oxford University Press, 2002. ISBN 0-19-824133-X.

Kenton Lee, Yoav Artzi, Yejin Choi, and Luke Zettlemoyer. Event Detection and Factuality Assessment with Non-Expert Supervision. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1643-1648, Lisbon, Portugal, 2015. Association for Computational Linguistics.

\section*{References vii}

Beth Levin. English Verb Classes and Alternations: A preliminary investigation. University of Chicago Press, Chicago, 1993. ISBN 0-226-47533-6.

Beth Levin and Malka Rappaport Hovav. Argument Realization. Cambridge University Press, Cambridge, 2005. ISBN 0-521-66376-8.

Leland McInnes and John Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat], February 2018. URL http://arxiv.org/abs/1802.03426. arXiv: 1802.03426.
Anne-Lyse Minard, Manuela Speranza, Ruben Urizar, Begoña Altuna, Marieke van Erp, Anneleen Schoen, and Chantal van Son. MEANTIME, the NewsReader Multilingual Event and Time Corpus. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pages 23-28, Paris, France, 2016. European Language Resources Association (ELRA).

Keir Moulton. Natural Selection and the Syntax of Clausal Complementation. PhD thesis, University of Massachusetts, Amherst, 2009.

\section*{References viii}

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov, and Erwin Marsi. MaltParser: A language-independent system for data-driven dependency parsing. Natural Language Engineering, 13(02):95-135, 2007.

David Pesetsky. Paths and Categories. PhD thesis, Massachusetts Institute of Technology, 1982.

David Pesetsky. Zero syntax: vol. 2: Infinitives. 1991.
Steven Pinker. Learnability and Cognition: The Acquisition of Argument Structure. MIT Press, Cambridge, MA, 1989. ISBN 0-262-51840-6.
Paul Portner and Aynat Rubinstein. Mood and contextual commitment. Semantics and Linguistic Theory, 22:461-487, 2013.
Kyle Rawlins. About 'about'. Semantics and Linguistic Theory, 23:336-357, 2013.
Craige Roberts. Information structure in discourse: Towards an integrated formal theory of pragmatics. Working Papers in Linguistics-Ohio State University Department of Linguistics, pages 91-136, 1996.
Jacopo Romoli. The presuppositions of soft triggers aren't presuppositions. Semantics and Linguistic Theory, 21:236-256, 2011.

\section*{References ix}

Rachel Rudinger, Aaron Steven White, and Benjamin Van Durme. Neural Models of Factuality. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 731-744, New Orleans, Louisiana, 2018. Association for Computational Linguistics. URL http://aclweb.org/anthology/N18-1067.

Roser Saurí and James Pustejovsky. FactBank: a corpus annotated with event factuality. Language Resources and Evaluation, 43(3):227, 2009.

Roser Saurí and James Pustejovsky. Are you sure that this happened? assessing the factuality degree of events in text. Computational Linguistics, 38(2):261-299, 2012.
Tatjana Scheffler. Evidentiality and German attitude verbs. University of Pennsylvania Working Papers in Linguistics, 15(1), 2009.

Mandy Simons. On the conversational basis of some presuppositions. Semantics and Linguistic Theory, 11:431-448, 2001.

Mandy Simons, Judith Tonhauser, David Beaver, and Craige Roberts. What projects and why. Semantics and linguistic theory, 20:309-327, 2010.

\section*{References \(x\)}

Benjamin Spector and Paul Egré. A uniform semantics for embedded interrogatives:
An answer, not necessarily the answer. Synthese, 192(6):1729-1784, 2015.
Robert Stalnaker. Inquiry. Cambridge University Press, Cambridge, 1984.
Nadine Theiler, Floris Roelofsen, and Maria Aloni. What's wrong with believing whether. In Semantics and Linguistic Theory, volume 27, pages 248-265, 2017.

Wataru Uegaki. Content nouns and the semantics of question-embedding predicates. Proceedings of Sinn und Bedeutung 16, pages 613-626, 2012.

Wataru Uegaki. Content nouns and the semantics of question-embedding. Journal of Semantics, 33(4):623-660, 2015.

Elisabeth Villalta. Spanish subjunctive clauses require ordered alternatives. Semantics and Linguistic Theory, 10:239-256, 2000.
Elisabeth Villalta. Mood and gradability: an investigation of the subjunctive mood in Spanish. Linguistics and Philosophy, 31(4):467-522, 2008.

Aaron Steven White. Factive-implicatives and modalized complements. In Jyoti Iyer and Leland Kusmer, editors, Proceedings of the 44th annual meeting of the North East Linguistic Society, pages 267-278, University of Connecticut, 2014.

\section*{References xi}

Aaron Steven White. Information and Incrementality in Syntactic Bootstrapping. PhD thesis, University of Maryland, College Park, MD, 2015.

Aaron Steven White and Kyle Rawlins. A computational model of S-selection. Semantics and Linguistic Theory, 26:641-663, 2016a.

Aaron Steven White and Kyle Rawlins. Question agnosticism and change of state., September 2016b.

Aaron Steven White and Kyle Rawlins. Question agnosticism and change of state. In Proceedings of Sinn und Bedeutung 21, page to appear, 2017.

Aaron Steven White and Kyle Rawlins. The role of veridicality and factivity in clause selection. In Proceedings of the 48th Annual Meeting of the North East Linguistic Society, page to appear, Amherst, MA, 2018. GLSA Publications.

Aaron Steven White, Valentine Hacquard, and Jeffrey Lidz. Projecting attitudes. 2015.
Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger, Kyle Rawlins, and Benjamin Van Durme. Universal decompositional semantics on universal dependencies. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1713-1723, Austin, TX, 2016. Association for Computational Linguistics.

\section*{References xii}

Susi Wurmbrand. Tense and aspect in English infinitives. Linguistic Inquiry, 45(3): 403-447, 2014.

Arnold M. Zwicky. In a manner of speaking. Linguistic Inquiry, 2(2):223-233, 1971.```

