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Introduction



Three questions for a theory of selection

Structure of the domain

What types of things do predicates relate?

S(emantic)-selection

Which predicates relate which types of things?

Projection rules

What is the mapping from those types to syntactic structures?
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Two challenges to future progress

Main assumption

We not only have the right architectural assumptions for an-
swering these questions, we have pretty good answers.

Two challenges

As our theories of selection gain coverage of the lexicon...

1. ...distinguishing competing theories requires more data +
methods for scaling distributional analysis to those data.

2. ...they grow in complexity, requiring a learning account
that is capable of acquiring this complexity from a corpus.
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Today’s talk

Main contribution

A computationalmethod for scaling distributional analysis that
is agnostic about the form of the distribution.

Basic idea

1. Formalize S(emantic)-selection, projection rules, and
lexical idiosyncrasy at Marr’s (1982) computational level

2. Collect data on many verbs’ syntactic distributions
3. Given syntactic distribution data, use computational
techniques to automate inference of projection rules and
verbs’ semantic type, controlling for lexical idiosyncrasy
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Today’s talk

Focus

Syntactic distribution of∼1000 English clause-embedding verbs

Question #1

What does the model infer about S-selection and projection,
given syntactic distributions collected via acceptability judgments?

Question #2

How does the model’s solution compare when given syntactic
distributions collected from a corpus?
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Today’s talk

Idea (≈ poverty of the stimulus argument)

If S-selection for some type cannot be gleaned from a corpus,
an otherwise learnable semantic property determines it.

Finding

There are types that cannot be learned even from large corpora.

Methodological implication

We cannot rely on corpus distributions alone for determining
selectional patterns.
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Today’s talk

Case study

Responsive predicates: take both interrogative and declaratives

(1) a. John knows {that, whether} it’s raining.
b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Finding #1 (based on acceptability judgments)

Different answer for communicative and cognitive verbs.

Finding #2 (based on comparison of acceptability) and corpus

Only the cognitive verb pattern is evidenced in the corpora.
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Outline

Introduction

A model of S-selection & projection

Acceptability dataset

Data collection

Model fitting and results

Corpus Dataset

Data collection

Model fitting and results

Conclusions and future directions
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A model of S-selection & projection



Multiplicity

Many verbs are syntactically multiplicitous

(2) a. John knows {that, whether} it’s raining.
b. John wants {it to rain, rain}.

Syntactic multiplicity does not imply semantic multiplicity

(3) a. John knows [what the answer is]S.
b. John knows [the answer]NP.

J(3b)K = J(3a)K suggests it is possible for type(JNPK) = type(JSK)
cf. Baker 1968, Heim 1979, Romero 2005, Nathan 2006, Frana 2010a, Aloni & Roelofsen 2011
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Projection

What do the projection rules look like?

How are a verb’s semantic type signatures projected onto its
syntactic type signatures (subcategorization frames)? (Gruber 1965,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

[ Q]⟨⟨⟨s,t⟩,t⟩, t⟩[ Q] (Grimshaw’s notation)(Montagovian notation)

[ S] [ NP]

Semantic type

Projection

Syntactic type

15



Projection

What do the projection rules look like?

How are a verb’s semantic type signatures projected onto its
syntactic type signatures (subcategorization frames)? (Gruber 1965,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

[ Q]⟨⟨⟨s,t⟩,t⟩, t⟩[ Q] (Grimshaw’s notation)(Montagovian notation)

[ S] [ NP]

Semantic type

Projection

Syntactic type

15



Projection

What do the projection rules look like?

How are a verb’s semantic type signatures projected onto its
syntactic type signatures (subcategorization frames)? (Gruber 1965,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

[ Q]⟨⟨⟨s,t⟩,t⟩, t⟩[ Q] (Grimshaw’s notation)(Montagovian notation)

[ S] [ NP]

Semantic type

Projection

Syntactic type

15



Projection

What do the projection rules look like?

How are a verb’s semantic type signatures projected onto its
syntactic type signatures (subcategorization frames)? (Gruber 1965,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

[ Q]⟨⟨⟨s,t⟩,t⟩, t⟩[ Q] (Grimshaw’s notation)(Montagovian notation)

[ S] [ NP]

Semantic type

Projection

Syntactic type

15



A model of S-selection and projection

Semantic
Type

Syntactic
Distribution
Idealized
Syntactic
Distribution

Observed
Syntactic
Distribution

Acceptability
Judgment
Data

Corpus
Count
Data

Projection
Rules

Lexical
Noise
Noise
Model

Type
Signature
Constructor

Lexicon
Constructor

Projection
Constructor
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Lexical idiosyncrasy

Lexical idiosyncrasy

Observed syntactic distributions are not a perfect reflection of
semantic type + projection rules

Example

Some Q(uestion)-selecting verbs allow concealed questions...

(4) a. Mary asked what time it was.
b. Mary asked the time.

...others do not (Grimshaw 1979, Pesetsky 1982, 1991, Nathan 2006, Frana 2010b, a.o.)

(5) a. Mary wondered what time it was.
b. *Mary wondered the time.
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Two kinds of lexical idiosyncrasy

The additive approach (Grimshaw 1979)

Verbs are related to semantic type signatures (S-selection) and
syntactic type signatures (C-selection)

S-selection ◦ projection ∨ C-selection = syntactic distribution

The multiplicative approach (Pesetsky 1982, 1991)

Verbs are related to semantic type signatures (S-selection); C-
selection is an epiphenomenon of verbs’ abstract case

S-selection ◦ projection ∧ case = syntactic distribution
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Two kinds of lexical idiosyncrasy

Shared core see White & Rawlins 2016 for formal details

Lexical noise—i.e. lexical idiosyncrasy—alters idealized syntac-
tic distributions

S-selection ◦ projection ⊗ noise = syntactic distribution

19



A model of S-selection and projection

Semantic
Type

Syntactic
Distribution
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Syntactic
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Specifying the model

Question

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

Strategy

1. Give model in terms of sets and functions
2. Convert this model into a boolean matrix model

21
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A boolean model of S-selection

know→ {[ P], [ Q]}think→ {[ P]} wonder→ {[ Q]}

S =


[ P] [ Q] · · ·

think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·
· · ·

...
...

. . .
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A boolean model of projection

[ P]→ {[ that S], [ NP], ...} [ Q]→ {[ whether S], [ NP], ...}

Π =


[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



24



A boolean model of projection

[ P]→ {[ that S], [ NP], ...} [ Q]→ {[ whether S], [ NP], ...}

Π =


[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



24



A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .



[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



[ that S] [ whether S] · · ·

[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .



25



A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .



[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



[ that S] [ whether S] · · ·

[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .



25



A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .



[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



[ that S] [ whether S] · · ·

[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .



25



A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .



[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



[ that S] [ whether S] · · ·

[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .



25



A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .



[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



[ that S] [ whether S] · · ·

[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .



25



A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .



[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .



[ that S] [ whether S] · · ·

[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .



25



A model of S-selection and projection

Semantic
Type

Syntactic
Distribution
Idealized
Syntactic
Distribution

Observed
Syntactic
Distribution

Acceptability
Judgment
Data

Corpus
Count
Data

Projection
Rules

Lexical
Noise
Noise
Model

Type
Signature
Constructor

Lexicon
Constructor

Projection
Constructor

26



A boolean model of observed syntactic distribution

∀t ∈ SYNTYPE : D(wonder, t) = D̂(wonder, t)⊗ N(wonder, t)
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Animating abstractions

Question

What is this model useful for?

Answer

In conjunction withmodern computational techniques, thismodel
allow us to scale distributional analysis to an entire lexicon

Basic idea

Distributional analysis corresponds to reversing model arrows
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Acceptability dataset



Data available at megaattitude.com
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MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings

for
1000 clause-embedding verbs

×
50 syntactic frames

32



MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings
for

1000 clause-embedding verbs

×
50 syntactic frames

32



Verb selection
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Sentence construction

Challenge

Automate construction of a very large set of frames in a way that
is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites

(6) Examples of responsives
a. know + NP V {that, whether} S

Someone knew {that, whether} something happened.
b. tell + NP V NP {that, whether} S

Someone told someone {that, whether} something happened.
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Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing
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Data collection

• 1,000 verbs × 50 syntactic frames = 50,000 sentences

• 1,000 lists of 50 items each
• Each verb only once per list
• Each frame only once per list

• 727 unique Mechanical Turk participants
• Annotators allowed to do multiple lists, but never the
same list twice

• 5 judgments per item
• No annotator sees the same sentence more than once
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Task

Turktools (Erlewine & Kotek 2015)

39



Validating the data

Interannotator agreement

Spearman rank correlation calculated by list on a pilot 30 verbs

Pilot verb selection

Same verbs used by White (2015), White et al. (2015), selected
based on Hacquard & Wellwood’s (2012) attitude verb classifi-
cation

1. Linguist-to-linguist
median: 0.70, 95% CI: [0.62, 0.78]

2. Linguist-to-annotator
median: 0.55, 95% CI: [0.52, 0.58]

3. Annotator-to-annotator
median: 0.56, 95% CI: [0.53, 0.59]
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Fitting the model

Goal

Find representations of verbs’ semantic type signatures and
projection rules that best explain the acceptability judgments

Challenges

1. Infeasible to search over 21000T × 250T possible
configurations (T = # of type signatures)

2. Finding the best boolean model fails to capture
uncertainty inherent in judgment data
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Fitting the model

Solution

Search probability distributions over verbs’ semantic type sig-
natures and projection rules

Going probabilistic

Wrap boolean expressions in probability measures
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A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =

∨
t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =

∨
t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨
t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−

∏
t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .
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Wrapping with probabilities

P(S[VERB, t] ∧Π[t, SYNTYPE]) = P(S[VERB, t])P(Π[t, SYNTYPE] | S[VERB, t])
= P(S[VERB, t])P(Π[t, SYNTYPE])

P

(∨
t
S[VERB, t] ∧Π[t, SYNTYPE]

)
= P

(
¬
∧
t
¬(S[VERB, t] ∧Π[t, SYNTYPE])

)

= 1− P

(∧
t
¬(S[VERB, t] ∧Π[t, SYNTYPE])

)
= 1−

∏
t
P (¬(S[VERB, t] ∧Π[t, SYNTYPE]))

= 1−
∏
t
1− P (S[VERB, t] ∧Π[t, SYNTYPE])

= 1−
∏
t
1− P(S[VERB, t])P(Π[t, SYNTYPE])
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Fitting the model

Noise model

Standard model for acceptability judgments: cumulative link
logit mixed effects model (Agresti 2014)

Algorithm

Adam optimizer (basically, fancy gradient descent) (Kingma & Ba 2014)

Remaining challenge

Don’t know the number of type signatures T

Standard solution

Fit the model with many type signatures and compare using an
information criterion, e.g., the Akaike Information Criterion (AIC)
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Akaike Information Criterion

High-level idea

Measures the information theoretic “distance” to the truemodel
from the best model with T types signatures (Akaike 1974)

Result

12 is the optimal number of type signatures according to AIC

Reporting findings

Best model with 12 type signatures
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Findings

Three findings

1. Cognitive predicates
1.1 Two distinct type signatures [ P] and [ Q]

1.2 Coercion of [ P] to [ Q] and [ Q] to [ P]

2. Communicative predicates
2.1 Two unified type signatures [ (Ent) P⊕Q] (optional

recipient) and [ Ent P⊕Q] (obligatory recipient)
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Findings

[ P] [ Q]

[ that S] [ whether S]
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Hybrid types

Question

What do I mean by P⊕Q?

Example

Structures with both informative and inquisitive content (Groenendijk
& Roelofsen 2009, a.o.)

• S-selectional behavior of responsive predicates on some
accounts (Uegaki 2012; Rawlins 2013)

• Some attitudes whose content is a hybrid Lewisian (1988)
subject matter (Rawlins 2013 on think v. think about)
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Projection
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NP Ved to NP whether S
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NP Ved to NP that S[-tense]
NP Ved NP to NP

NP Ved about whether S
NP Ved about NP
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NP was Ved whether S[future]
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NP was Ved that S[future]
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S-selection: propositions and questions
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Interim discussion

What to conclude

Proposition and question types live alongside hybrid types, and
the presence of a hybrid type correlates with communicativity

What to exclude

Accounts that reduce (or unify) declarative and interrogative se-
lection solely to S-selection of a single type + coercion
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Interim discussion

Question

Is there anything to say about whether selection for P, Q, or P⊕Q
is reducible to lexical semantics?

White & Rawlins’s (2017) claim

It’s all about the event structure of the predicate.

Today’s strategy

Do we find the same type signatures when fitting the model to
corpus data?
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Corpus Dataset



Corpus data

42.8 million verb-subcategorization frame pairs extracted from
Parsed ukWaC (PukWaC) (Baroni et al. 2009)

2 billion word web corpus constructed from crawl of the .uk
domain, dependency parsed with MaltParser (Nivre et al. 2007)

NN VBD VVN IN PPS VHD VVN SENT
I was amazed that they had come .

ROOT

SUBJ VC

OBJ

SUBJ VC
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Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)

2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)

3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects

4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements

5. Whether there is a clausal complement, and if so...
5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)

5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)

5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)

5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)
2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

100



Acceptability v. PukWaC corpus counts
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Predicting acceptability

Question

Is this r2 good enough?

Non-answer

Better than existing alternatives, such as VALEX (Korhonen et al. 2006)

Possible answer

Maybe if the noise model is set up correctly.
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A model of S-selection and projection
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Fitting the model

Core model

Keep model of S-selection and projection constant.

Noise model

Negative binomial mixed effects model (Church & Gale 1995, Gelman et al. 2013)

Algorithm

Adam optimizer (Kingma & Ba 2014)
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Fitting the model

Selecting a number of type signatures

Fit the model with many type signatures and compare using an
information criterion, e.g., the Akaike Information Criterion (AIC)

Result

24 is the optimal number of type signatures according to AIC

Reporting findings

Compare count model with 24 type signatures to acceptability
model with 12
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Question
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Acceptability v. corpus type signatures
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Acceptability v. corpus type signatures
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Acceptability v. corpus type signatures

Question

What do the closest corpus type signatures to [ Ent P⊕Q] and
[ (Ent) P⊕Q] look like?

Question

What do the closest corpus type signatures to [ Ent P⊕Q] and
[ (Ent) P⊕Q] look like?
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Recipients in the corpus type signatures

Relationship of type1 and frame
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Recipients in the corpus type signatures

NP was Ved about NP

NP was Ved about whether S
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Recipients in the corpus type signatures
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Acceptability v. corpus type signatures
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Findings

Shared type signatures

[ P] and [ Q] show up as separate type signatures in both
the acceptability solution and the corpus solution

Differing type signatures

[ Ent P⊕Q] and [ (Ent) P⊕Q] only show up in the accept-
ability solution
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Interim discussion

Question #1

Why would the communicative type signatures not be found in
the corpus?

Potential answer

The corpus data is enough to tell that the predicate is commu-
nicative, but you need to know that communicatives take P⊕Q
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Interim discussion

Question #2

What about the other 18 type signatures?

Potential answer

These tend to be junk, but we may be able to filter them out by
looking at how uncertain the model is that particular verbs take
that type signature overall (measured using entropy).

128



Interim discussion

Question #2

What about the other 18 type signatures?

Potential answer

These tend to be junk, but we may be able to filter them out by
looking at how uncertain the model is that particular verbs take
that type signature overall (measured using entropy).

128



Interim discussion

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

Entropy

M
a

x
im

u
m

 c
o

rr
e

la
ti

o
n

129



Interim discussion

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

Entropy

M
a

x
im

u
m

 c
o

rr
e

la
ti

o
n

130



Interim discussion

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

Entropy

M
a

x
im

u
m

 c
o

rr
e

la
ti

o
n

131



Conclusions and future directions



Conclusions

Structure of the domain

What types of things do predicates relate?

S(emantic)-selection

Which predicates relate which types of things?

Projection rules

What is the mapping from those types to syntactic structures?
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Conclusion

Main contribution

A computationalmethod for scaling distributional analysis that
is agnostic about the form of the distribution.

Focus

Syntactic distribution of∼1000 English clause-embedding verbs

Question #1

What does the model infer about S-selection and projection,
given syntactic distributions collected via acceptability judgments?

Question #2

How does the model’s solution compare when given syntactic
distributions collected from a corpus?
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Conclusion

Case study

Responsive predicates: take both interrogative and declaratives

(7) a. John knows {that, whether} it’s raining.
b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Finding #1

Cognitives take separate P and Q types, while communicatives
take a hybrid P⊕Q type.

Finding #2

Only the cognitive types are replicated when looking at a corpus
(though apparent communicative types still show up).
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Future directions

Further investigation of type signatures

Seven other type signatures that are also remarkably coherent

Example

Many nonfinite-taking verbs
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Projection: events

NP Ved for NP to VP
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NP Ved to VP[eventive]

NP Ved to VP[stative]

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Probability that [ __ Ev ] → frame

P
ro

b
a

b
ili

ty
 t

h
a

t 
[ 

_
_

 E
n

t 
E

v
 ]

→
fr

a
m

e

139



Projection: events

NP Ved NP to VP[stative]

NP Ved for NP to VP

NP Ved

NP was Ved

NP Ved to VP[eventive]

NP was Ved to VP[eventive]

NP Ved to VP[stative]

NP was Ved to VP[stative]

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Probability that [ __ Ev ] → frame

P
ro

b
a

b
ili

ty
 t

h
a

t 
[ 

_
_

 E
n

t 
E

v
 ]

→
fr

a
m

e

140



S-selection: events
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S-selection: events
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S-selection: events
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S-selection: events
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Future directions

Atomic v. structured type signatures

Currently treating type signatures as atomic but type signatures
have rich structure

Idea

Build a model that represents mappings from...

1. ...verbs to the primitive types they relate
2. ...type signatures to the primitive types they are
constituted of

3. ...primitive types to the syntactic constituents they map to
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Future directions

Homophony v. regular polysemy v. underspecification

Patterns in how semantic type signatures distribute across verbs
may belie regular polysemy rules.

Idea

Polysemous verbs are those that fall outside dense regions of
type signature space.

Question

Can we learn rules of regular polysemy using an elaborated ver-
sion of the model proposed here?
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