Computational approaches to clause selection

Aaron Steven White

University of Rochester

Department of Linguistics

Goergen Institute for Data Science

Department of Computer Science

Department of Brain & Cognitive Sciences

Selectionfest Berlin 11th November, 2017

Slides available at aswhite.net

Kyle Rawlins

Johns Hopkins University Department of Cognitive Science

Introduction

Structure of the domain

What types of things do predicates relate?

Structure of the domain

What types of things do predicates relate?

S(emantic)-selection

Which predicates relate which types of things?

Structure of the domain

What types of things do predicates relate?

S(emantic)-selection

Which predicates relate which types of things?

Projection rules

What is the mapping from those types to syntactic structures?

We not only have the **right architectural assumptions** for answering these questions, we have **pretty good answers**.

We not only have the **right architectural assumptions** for answering these questions, we have **pretty good answers**.

Two challenges

As our theories of selection gain coverage of the lexicon...

We not only have the **right architectural assumptions** for answering these questions, we have **pretty good answers**.

Two challenges

As our theories of selection gain coverage of the lexicon...

 ...distinguishing competing theories requires more data + methods for scaling distributional analysis to those data.

We not only have the **right architectural assumptions** for answering these questions, we have **pretty good answers**.

Two challenges

As our theories of selection gain coverage of the lexicon...

- ...distinguishing competing theories requires more data + methods for scaling distributional analysis to those data.
- 2. ...they grow in complexity, requiring a learning account that is capable of acquiring this complexity from a corpus.

A **computational method** for **scaling distributional analysis** that is agnostic about the form of the distribution.

A **computational method** for **scaling distributional analysis** that is agnostic about the form of the distribution.

A **computational method** for **scaling distributional analysis** that is agnostic about the form of the distribution.

Basic idea

1. Formalize S(emantic)-selection, projection rules, and lexical idiosyncrasy at Marr's (1982) computational level

A **computational method** for **scaling distributional analysis** that is agnostic about the form of the distribution.

Basic idea

- 1. Formalize S(emantic)-selection, projection rules, and lexical idiosyncrasy at Marr's (1982) computational level
- 2. Collect data on many verbs' syntactic distributions

A **computational method** for **scaling distributional analysis** that is agnostic about the form of the distribution.

Basic idea

- 1. Formalize S(emantic)-selection, projection rules, and lexical idiosyncrasy at Marr's (1982) computational level
- 2. Collect data on many verbs' syntactic distributions
- Given syntactic distribution data, use computational techniques to automate inference of projection rules and verbs' semantic type, controlling for lexical idiosyncrasy

Focus

Syntactic distribution of \sim 1000 English clause-embedding verbs

Focus

Syntactic distribution of \sim 1000 English clause-embedding verbs

Question #1

What does the model infer about S-selection and projection, given syntactic distributions collected via acceptability judgments?

Focus

Syntactic distribution of \sim 1000 English clause-embedding verbs

Question #1

What does the model infer about S-selection and projection, given syntactic distributions collected via acceptability judgments?

Question #2

How does the model's solution compare when given syntactic distributions collected from a corpus?

Idea (pprox poverty of the stimulus argument)

If **S-selection** for some type cannot be gleaned from a corpus, an otherwise learnable **semantic property** determines it.

Idea (pprox poverty of the stimulus argument)

If **S-selection** for some type cannot be gleaned from a corpus, an otherwise learnable **semantic property** determines it.

Finding

There are types that cannot be learned even from large corpora.

Idea (pprox poverty of the stimulus argument)

If **S-selection** for some type cannot be gleaned from a corpus, an otherwise learnable **semantic property** determines it.

Finding

There are types that cannot be learned even from large corpora.

Methodological implication

We cannot rely on corpus distributions alone for determining selectional patterns.

Responsive predicates: take both interrogative and declaratives

- (1) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Responsive predicates: take both interrogative and declaratives

- (1) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Responsive predicates: take both interrogative and declaratives

- (1) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Finding #1 (based on acceptability judgments)

Different answer for communicative and cognitive verbs.

Responsive predicates: take both interrogative and declaratives

- (1) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk & Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Finding #1 (based on acceptability judgments)

Different answer for communicative and cognitive verbs.

Finding #2 (based on comparison of acceptability) and corpus Only the cognitive verb pattern is evidenced in the corpora.

Outline

Introduction

- A model of S-selection & projection
- Acceptability dataset
 - Data collection
 - Model fitting and results
- Corpus Dataset
 - Data collection
 - Model fitting and results
- Conclusions and future directions

A model of S-selection & projection

Many verbs are syntactically multiplicitous

- (2) a. John knows {that, whether} it's raining.
 - b. John wants {it to rain, rain}.

Many verbs are syntactically multiplicitous

- (2) a. John knows {that, whether} it's raining.
 - b. John wants {it to rain, rain}.

Syntactic multiplicity does not imply semantic multiplicity

- (3) a. John knows [what the answer is]_S.
 - b. John knows [the answer]_{NP}.

Many verbs are syntactically multiplicitous

- (2) a. John knows {that, whether} it's raining.
 - b. John wants {it to rain, rain}.

Syntactic multiplicity does not imply semantic multiplicity

- (3) a. John knows [what the answer is]_S.
 - b. John knows [the answer]_{NP}.

[((3b)]] = [[(3a)]] suggests it is possible for type([[NP]]) = type([[S]])
cf. Baker 1968, Heim 1979, Romero 2005, Nathan 2006, Frana 2010a, Aloni & Roelofsen 2011

What do the projection rules look like?

How are a verb's semantic type signatures projected onto its syntactic type signatures (subcategorization frames)? (Gruber 1965,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

A model of S-selection and projection

Lexical idiosyncrasy

Observed syntactic distributions are not a perfect reflection of semantic type + projection rules

Example

Some Q(uestion)-selecting verbs allow concealed questions...

- (4) a. Mary asked what time it was.
 - b. Mary asked the time.

Lexical idiosyncrasy

Observed syntactic distributions are not a perfect reflection of semantic type + projection rules

Example

Some Q(uestion)-selecting verbs allow concealed questions...

- (4) a. Mary asked what time it was.
 - b. Mary asked the time.

...others do not (Grimshaw 1979, Pesetsky 1982, 1991, Nathan 2006, Frana 2010b, a.o.)

- (5) a. Mary wondered what time it was.
 - b. *Mary wondered the time.

The additive approach (Grimshaw 1979)

Verbs are related to semantic type signatures (**S-selection**) and syntactic type signatures (**C-selection**)

S-selection \circ projection \lor C-selection = syntactic distribution

The additive approach (Grimshaw 1979)

Verbs are related to semantic type signatures (**S-selection**) and syntactic type signatures (**C-selection**)

S-selection \circ projection \lor C-selection = syntactic distribution

The multiplicative approach (Pesetsky 1982, 1991)

Verbs are related to semantic type signatures (**S-selection**); **C-selection** is an epiphenomenon of verbs' abstract case

S-selection \circ projection \wedge case = syntactic distribution

Shared core see White & Rawlins 2016 for formal details

Lexical noise—i.e. lexical idiosyncrasy—alters idealized syntactic distributions

S-selection \circ projection \otimes noise = syntactic distribution

A model of S-selection and projection

How do we represent each object in the model?

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

Strategy

1. Give model in terms of sets and functions

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

Strategy

- 1. Give model in terms of sets and functions
- 2. Convert this model into a boolean matrix model

A model of S-selection and projection

$\mathsf{know} \to \{[__P], [__Q]\}$

$know \rightarrow \{[__P], [__Q]\} \quad wonder \rightarrow \{[__Q]\}$

$think \rightarrow \{[__P]\} \quad know \rightarrow \{[__P], [__Q]\} \quad wonder \rightarrow \{[__Q]\}$

$[_P] \rightarrow \{[_that S], [_NP], ...\} \qquad [_Q] \rightarrow \{[_whether S], [_NP], ...\}$

A boolean model of projection

 $\hat{D}(VERB, SYNTYPE) = \bigvee_{t \in SEMTYPES} S(VERB, t) \land \Pi(t, SYNTYPE)$

 $\hat{D}(VERB, SYNTYPE) = \bigvee_{t \in SEMTYPES} S(VERB, t) \land \Pi(t, SYNTYPE)$

 $\hat{D}(VERB, SYNTYPE) = \bigvee_{t \in SEMTYPES} S(VERB, t) \land \Pi(t, SYNTYPE)$

 $\hat{D}(\text{know}, [__that S]) = \bigvee_{t \in \{[P], [Q], ...\}} S(\text{know}, t) \land \Pi(t, [__that S])$

 $\hat{D}(\text{know}, [__that S]) = \bigvee_{t \in \{[P], [Q], ...\}} S(\text{know}, t) \land \Pi(t, [__that S])$

 $\hat{D}(wonder, [__NP]) = \bigvee_{t \in \{[_P], [_Q], ...\}} S(wonder, t) \land \Pi(t, [__NP])$

A model of S-selection and projection

 $\forall t \in SYNTYPE : D(wonder, t) = \hat{D}(wonder, t) \otimes N(wonder, t)$

 $\forall t \in SYNTYPE : D(wonder, t) = \hat{D}(wonder, t) \otimes N(wonder, t)$

	[_that S]	[whether S]	[NP]			[that S]	[whether S]	[NP]	
think	1	1	0	1	\	think	/ 0	0	0	\
know	1	1	1	1)	know	0	0	0)
wonder		0	1	1		wonder	0	0	1	
					.]					.]
	(·. /					·. /

 $\forall t \in SYNTYPE : \mathbf{D}(wonder, t) = \hat{\mathbf{D}}(wonder, t) \otimes \mathbf{N}(wonder, t)$

 $\forall t \in SYNTYPE : \mathbf{D}(wonder, t) = \hat{\mathbf{D}}(wonder, t) \otimes \mathbf{N}(wonder, t)$

What is this model useful for?

Answer

In conjunction with modern computational techniques, this model allow us to scale distributional analysis to an entire lexicon

Basic idea

Distributional analysis corresponds to reversing model arrows

A model of S-selection and projection

A model of S-selection and projection

29

Acceptability dataset

Data available at megaattitude.com

Ordinal (1-7 scale) acceptability ratings

Ordinal (1-7 scale) acceptability ratings for 1000 clause-embedding verbs

reassure alert alert question redo trust advise signal stress wager bet inform ask probe phone agonize prompt reaffirm affirm specify indicate panic dictate dispute worry threaten determine press lecture tease remind believe clarify admit whisper delight deligh delight attempt

Ordinal (1-7 scale) acceptability ratings for 1000 clause-embedding verbs × 50 syntactic frames

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites

- (6) Examples of responsives
 - a. know + NP V {that, whether} S
 Someone knew {that, whether} something happened.

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites

- (6) Examples of responsives
 - a. know + NP V {that, whether} S

Someone knew {that, whether} something happened.

b. tell + NP V NP {that, whether} S

Someone told someone {that, whether} something happened.

Automate construction of a very large set of frames in a way that is sufficiently general to many verbs

Solution

Construct semantically bleached frames using indefinites

- (6) Examples of responsives
 - a. know + NP V {that, whether} S

Someone knew {that, whether} something happened.

b. tell + NP V NP {that, whether} S

Someone told someone {that, whether} something happened.

+ 1,000 verbs \times 50 syntactic frames = 50,000 sentences

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each
 - Each verb only once per list

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each
 - Each verb only once per list
 - Each frame only once per list

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each
 - Each verb only once per list
 - Each frame only once per list
- 727 unique Mechanical Turk participants

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each
 - Each verb only once per list
 - Each frame only once per list
- 727 unique Mechanical Turk participants
 - Annotators allowed to do multiple lists, but never the same list twice

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each
 - Each verb only once per list
 - Each frame only once per list
- 727 unique Mechanical Turk participants
 - Annotators allowed to do multiple lists, but never the same list twice
- 5 judgments per item

- + 1,000 verbs \times 50 syntactic frames = 50,000 sentences
- 1,000 lists of 50 items each
 - Each verb only once per list
 - Each frame only once per list
- 727 unique Mechanical Turk participants
 - Annotators allowed to do multiple lists, but never the same list twice
- 5 judgments per item
 - No annotator sees the same sentence more than once

	Someon	ie ne	eaea 1 2	wnetne 3	r som	etning 5	nappe 6	nea. 7
		0	0		0		0	0
2.	Someon	ne ha	ted w	hich th	ing to	do.		
		1	2	3	4	5	6	7
3.	Someor	1e wa	ns wor	rried a	bout s	ometh	ing.	
		1	2	3	4	5	6	7
4.	Someor	ie all	owed	some	one do	some	hing.	
		1	2	3	4	5	6	7
		0	0	0	0	ō	ō	

Reward: \$0.00 per HIT HITs Available: 20 Duration: 14 weeks 2 days

Turktools (Erlewine & Kotek 2015)

Sentence Acceptability Task (expert annotation) Requester: JHU Semantics Lab

Interannotator agreement

Spearman rank correlation calculated by list on a pilot 30 verbs

Pilot verb selection

Same verbs used by White (2015), White et al. (2015), selected based on Hacquard & Wellwood's (2012) attitude verb classification

- 1. Linguist-to-linguist median: 0.70, 95% CI: [0.62, 0.78]
- 2. Linguist-to-annotator median: 0.55, 95% CI: [0.52, 0.58]

3. Annotator-to-annotator median: 0.56, 95% CI: [0.53, 0.59]

42

7	•					
· · ·						
						· · *
6	• •				• •	• • • •
-	8			• • • • •	00 0 0 0	
ŝ				•	• • •	
		• • • •		0 00 0		
		0	* • * •			
2 5		• • • • • •		• • •		
÷	•					
Ū.				• • • •		
_ ک					· · · · ·	
≥ ∧						
ed whether S						
σ						
O .						
		S S	8 *			
13						
R P						
F				• •		
~						
2		** * *	• • •	•		
		* *** * *	8			
			:			
		· · ·	• •			
1	• • • want	• •	•			
	1 2	3	4	5	e e	3 7
	1 4	5			, c	, ,
			NP (ed S		

43

7	۰	• •	••••	•		know
		• • •	• •	•		• • • • •
6		•				•• **
0						
S						
<u> </u>		• • •	* • * •			
9 5				• • •		
Ę	•		* * ** *			
ed whether S		• • •	• • • •			
ر ج	•* • •			8 *		• •
> 4	• • • • •	•••••••			•	• •
Ď					•••	
Ψ				· · · · · ·		
lg.				* * *		•
പ്		• • • • •	• • • •	•	٠	
N				•		•
					•	
2				•		•
		• • • • •	:			
			• • •			
	2 8. 222 5. 2		8	•		
1	• • • want	•	•			
	i 2	2 3	4	5	5 6	5 Ż
	• •	. 0	NP	ed S े		5
				cu o		

7	0	• •	• •• •	•	•	know
		• • •	• •	•		
6	• •			• ••		
Ŭ	8	• • • • •				
S				•		
Ľ.			* . : .			
ed whether S						
Ē	•	• • •	* * ** *	• • • • • •	•••••	• • • •
ē		• •	• • • •			
Ē			1		• • •	•
≥ 4	• •• • • •	•• • •• •			0	
σ	** * * *	88 * * * 8 8				think
Ŭ.				• •	••••••	• think
			* * •• *			•
_ ¹ 3						•
₽ [°]		• • • •		•	•	
Z						
					•	
2			• • •	•	•	
		• • • • •	8			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	•		
1	••••want	۰	•			
ı	i 2	3	4	5	6	7
	1 2		NP	ຸ່ລຸຄ	0	1
				ed S		

7	•	• •	wonder	0	•	know •
		• • • •	· · · ·	•••••	• • •	
~			• • •		• • •	•• **
6	• •					• • • • •
S				•	. • • •	
5			* . 8 .			
9 5						
Ē	•	• • •	• • • •		• • • • •	••••
Je		• • •	• • • •	• • •		•
Σı	• • • •		· · · · ·		• • •	•
_ 4					Ŭ	
ed whether S				•	•••••••	• think
	A 1 1 1 1		* * ** *	* * * •	• * •	•
_ ¹ 3			• • •		•	•
R	· · · · · · ·			• •	• • •	
-				•		
2						
-			8			
				•		
				•		
1	• • • • want	•	•			
l	1 2	2 3	4	5	6	Ż
	_	Ū.	NP	ed S	Ū	•

46

A model of S-selection and projection

A model of S-selection and projection

A model of S-selection and projection

Goal

Find representations of verbs' semantic type signatures and projection rules that best explain the acceptability judgments

Goal

Find representations of verbs' semantic type signatures and projection rules that best explain the acceptability judgments

Challenges

1. Infeasible to search over $2^{1000T} \times 2^{50T}$ possible configurations (*T* = # of type signatures)

Goal

Find representations of verbs' semantic type signatures and projection rules that best explain the acceptability judgments

Challenges

- 1. Infeasible to search over $2^{1000T} \times 2^{50T}$ possible configurations (*T* = # of type signatures)
- 2. Finding the best boolean model fails to capture uncertainty inherent in judgment data

Solution

Search probability distributions over verbs' semantic type signatures and projection rules

Solution

Search probability distributions over verbs' semantic type signatures and projection rules

Going probabilistic

Wrap boolean expressions in probability measures

A boolean model of idealized syntactic distribution

 $\hat{D}(VERB, SYNTYPE) = \bigvee_{t \in SEMTYPES} S(VERB, t) \land \Pi(t, SYNTYPE)$

A boolean model of idealized syntactic distribution

$$\hat{D}(\text{know}, [__\text{that S}]) = 1 - \prod_{t \in \{[_P], [_Q], ...\}} 1 - S(\text{know}, t) \times \Pi(t, [__\text{that S}])$$

 $\mathbb{P}(\mathsf{S}[\mathsf{VERB}, t] \land \mathbf{\Pi}[t, \mathsf{SYNTYPE}]) = \mathbb{P}(\mathsf{S}[\mathsf{VERB}, t])\mathbb{P}(\mathbf{\Pi}[t, \mathsf{SYNTYPE}] \mid \mathsf{S}[\mathsf{VERB}, t])$ $= \mathbb{P}(S[VERB, t])\mathbb{P}(\Pi[t, SYNTYPE])$ $\mathbb{P}\left(\bigvee_{t} \mathsf{S}[\mathsf{VERB}, t] \land \mathbf{\Pi}[t, \mathsf{SYNTYPE}]\right) = \mathbb{P}\left(\neg \bigwedge_{t} \neg(\mathsf{S}[\mathsf{VERB}, t] \land \mathbf{\Pi}[t, \mathsf{SYNTYPE}])\right)$ $= 1 - \mathbb{P}\left(\bigwedge_{t} \neg(\mathsf{S}[\mathsf{VERB}, t] \land \mathbf{\Pi}[t, \mathsf{SYNTYPE}])\right)$ $= 1 - \prod \mathbb{P}\left(\neg(\mathsf{S}[\mathsf{VERB}, t] \land \mathbf{\Pi}[t, \mathsf{SYNTYPE}])\right)$ $= 1 - \prod 1 - \mathbb{P}(\mathsf{S}[\mathsf{VERB}, t] \land \mathbf{\Pi}[t, \mathsf{SYNTYPE}])$ $= 1 - \prod [1 - \mathbb{P}(S[VERB, t])\mathbb{P}(\Pi[t, SYNTYPE])]$

Standard model for acceptability judgments: cumulative link logit mixed effects model (Agresti 2014)

Standard model for acceptability judgments: cumulative link logit mixed effects model (Agresti 2014)

Algorithm

Adam optimizer (basically, fancy gradient descent) (Kingma & Ba 2014)

Standard model for acceptability judgments: cumulative link logit mixed effects model (Agresti 2014)

Algorithm

Adam optimizer (basically, fancy gradient descent) (Kingma & Ba 2014)

Remaining challenge

Don't know the number of type signatures T

Standard model for acceptability judgments: cumulative link logit mixed effects model (Agresti 2014)

Algorithm

Adam optimizer (basically, fancy gradient descent) (Kingma & Ba 2014)

Remaining challenge

Don't know the number of type signatures T

Standard solution

Fit the model with many type signatures and compare using an information criterion, e.g., the Akaike Information Criterion (AIC)

High-level idea

Measures the information theoretic "distance" to the true model from the best model with *T* types signatures (Akaike 1974)

High-level idea

Measures the information theoretic "distance" to the true model from the best model with *T* types signatures (Akaike 1974)

Result

12 is the optimal number of type signatures according to AIC

High-level idea

Measures the information theoretic "distance" to the true model from the best model with *T* types signatures (Akaike 1974)

Result

12 is the optimal number of type signatures according to AIC

Reporting findings

Best model with 12 type signatures

Three findings

1. Cognitive predicates

1.1 Two distinct type signatures [___P] and [___Q]

Findings

[___P] [___Q]

Three findings

- 1. Cognitive predicates
 - 1.1 Two distinct type signatures [___P] and [___Q]
 - 1.2 Coercion of [____P] to [____Q] and [____Q] to [____P]

Three findings

- 1. Cognitive predicates
 - 1.1 Two distinct type signatures [___P] and [___Q]
 - 1.2 Coercion of [____P] to [____Q] and [____Q] to [____P]

2. Communicative predicates

2.1 Two unified type signatures $[_(Ent) P \oplus Q]$ (optional recipient) and $[_Ent P \oplus Q]$ (obligatory recipient)

Question

What do I mean by $P \oplus Q$?

Example

Structures with both informative and inquisitive content $\ensuremath{_{\text{(Groenendijk})}}$

& Roelofsen 2009, a.o.)

- S-selectional behavior of responsive predicates on some accounts (Uegaki 2012; Rawlins 2013)
- Some attitudes whose content is a hybrid Lewisian (1988) subject matter (Rawlins 2013 on think v. think about)

Projection

Projection: optional recipients

Projection: optional recipients

Projection: optional recipients

74

Projection: optional recipients

75

79

83

85

What to conclude

Proposition and question types live alongside hybrid types, and the presence of a hybrid type correlates with communicativity

What to conclude

Proposition and question types live alongside hybrid types, and the presence of a hybrid type correlates with communicativity

What to exclude

Accounts that reduce (or unify) declarative and interrogative selection solely to S-selection of a single type + coercion

Is there anything to say about whether selection for P, Q, or $P \oplus Q$ is reducible to lexical semantics?

Interim discussion

Acceptability of [_ CP[+Q]]

Veridicality

Interim discussion

Interim discussion

Is there anything to say about whether selection for P, Q, or $P \oplus Q$ is reducible to lexical semantics?

Is there anything to say about whether selection for P, Q, or $P \oplus Q$ is reducible to lexical semantics?

White & Rawlins's (2017) claim

It's all about the event structure of the predicate.

Is there anything to say about whether selection for P, Q, or $P \oplus Q$ is reducible to lexical semantics?

White & Rawlins's (2017) claim

It's all about the event structure of the predicate.

Today's strategy

Do we find the same type signatures when fitting the model to corpus data?

Corpus Dataset

42.8 million verb-subcategorization frame pairs extracted from Parsed ukWaC (PukWaC) (Baroni et al. 2009)

42.8 million verb-subcategorization frame pairs extracted from Parsed ukWaC (PukWaC) (Baroni et al. 2009)

2 billion word web corpus constructed from crawl of the .uk domain, dependency parsed with MaltParser (Nivre et al. 2007)

42.8 million verb-subcategorization frame pairs extracted from Parsed ukWaC (PukWaC) (Baroni et al. 2009)

2 billion word web corpus constructed from crawl of the .uk domain, dependency parsed with MaltParser (Nivre et al. 2007)

1. Form of the matrix subject (i.e. potentially expletive?)

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects
- 4. Whether there are other PP complements

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects
- 4. Whether there are other PP complements
- 5. Whether there is a clausal complement, and if so...

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects
- 4. Whether there are other PP complements
- 5. Whether there is a clausal complement, and if so...
 - 5.1 ...what the complementizer is (if any)

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects
- 4. Whether there are other PP complements
- 5. Whether there is a clausal complement, and if so...
 - 5.1 ...what the complementizer is (if any)
 - 5.2 ...what the WH word is (if any)

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects
- 4. Whether there are other PP complements
- 5. Whether there is a clausal complement, and if so...
 - 5.1 ...what the complementizer is (if any)
 - 5.2 ...what the WH word is (if any)
 - 5.3 ...what the subject is (if any)

- 1. Form of the matrix subject (i.e. potentially expletive?)
- 2. Tense/aspect for matrix verb (and all matrix auxiliaries)
- 3. Whether there is direct or indirect NP objects
- 4. Whether there are other PP complements
- 5. Whether there is a clausal complement, and if so...
 - 5.1 ...what the complementizer is (if any)
 - 5.2 ...what the WH word is (if any)
 - 5.3 ...what the subject is (if any)
 - 5.4 ...tense/aspect for the embedded verb (and all auxiliaries)

Acceptability v. PukWaC corpus counts

Acceptability v. PukWaC corpus counts

Question

Is this r^2 good enough?

Question

Is this r^2 good enough?

Non-answer

Better than existing alternatives, such as VALEX (Korhonen et al. 2006)

Acceptability v. VALEX corpus counts

Acceptability v. VALEX corpus counts

Question

Is this r^2 good enough?

Non-answer

Better than existing alternatives, such as VALEX (Korhonen et al. 2006)

Question

Is this r^2 good enough?

Non-answer

Better than existing alternatives, such as VALEX (Korhonen et al. 2006)

Possible answer

Maybe if the noise model is set up correctly.

109

109

Core model

Keep model of S-selection and projection constant.

Core model

Keep model of S-selection and projection constant.

Noise model

Negative binomial mixed effects model (Church & Gale 1995, Gelman et al. 2013)

Core model

Keep model of S-selection and projection constant.

Noise model

Negative binomial mixed effects model (Church & Gale 1995, Gelman et al. 2013)

Algorithm

Adam optimizer (Kingma & Ba 2014)

Selecting a number of type signatures

Fit the model with many type signatures and compare using an information criterion, e.g., the Akaike Information Criterion (AIC)

Selecting a number of type signatures

Fit the model with many type signatures and compare using an information criterion, e.g., the Akaike Information Criterion (AIC)

Result

24 is the optimal number of type signatures according to AIC

Selecting a number of type signatures

Fit the model with many type signatures and compare using an information criterion, e.g., the Akaike Information Criterion (AIC)

Result

24 is the optimal number of type signatures according to AIC

Reporting findings

Compare count model with 24 type signatures to acceptability model with 12

Question

Is this r^2 good enough?

Non-answer

Better than existing alternatives, such as VALEX (Korhonen et al. 2006)

Possible answer

Maybe if the noise model is set up correctly.

Acceptability v. VALEX corpus counts

Acceptability v. VALEX corpus counts

117

Question

What do the closest corpus type signatures to [__Ent $P \oplus Q$] and [__(Ent) $P \oplus Q$] look like?

Recipients in the corpus type signatures

Relationship of type2 and frame

Relationship of type1 and frame

Recipients in the corpus type signatures

Recipients in the corpus type signatures

Recipients in the corpus type signatures

Relationship of type1 and frame

Question

What do the closest corpus type signatures to [__Ent $P \oplus Q$] and [__(Ent) $P \oplus Q$] look like?

Question

What do the closest corpus type signatures to [__Ent $P \oplus Q$] and [__(Ent) $P \oplus Q$] look like?

Question

What do the closest corpus type signatures to [__Ent $P \oplus Q$] and [__(Ent) $P \oplus Q$] look like?

Shared type signatures

[___P] and [___Q] show up as separate type signatures in both the acceptability solution and the corpus solution

Shared type signatures

[___P] and [___Q] show up as separate type signatures in both the acceptability solution and the corpus solution

Differing type signatures

 $[__Ent \ P \oplus Q]$ and $[__(Ent) \ P \oplus Q]$ only show up in the acceptability solution

Why would the communicative type signatures not be found in the corpus?

Why would the communicative type signatures not be found in the corpus?

Potential answer

The corpus data is enough to tell that the predicate is communicative, but you need to know that communicatives take $\mathsf{P}\oplus\mathsf{Q}$

What about the other 18 type signatures?

What about the other 18 type signatures?

Potential answer

These tend to be junk, but we may be able to filter them out by looking at how uncertain the model is that particular verbs take that type signature overall (measured using entropy).

Interim discussion

Interim discussion

Interim discussion

Conclusions and future directions

Structure of the domain

What types of things do predicates relate?

Structure of the domain

What types of things do predicates relate?

S(emantic)-selection

Which predicates relate which types of things?

Structure of the domain

What types of things do predicates relate?

S(emantic)-selection

Which predicates relate which types of things?

Projection rules

What is the mapping from those types to syntactic structures?

Main contribution

A **computational method** for **scaling distributional analysis** that is agnostic about the form of the distribution.

Conclusion

Case study

Responsive predicates: take both interrogative and declaratives

- (7) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Case study

Responsive predicates: take both interrogative and declaratives

- (7) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Case study

Responsive predicates: take both interrogative and declaratives

- (7) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Finding #1

Cognitives take separate P and Q types, while communicatives take a hybrid $P \oplus Q$ type.

Case study

Responsive predicates: take both interrogative and declaratives

- (7) a. John knows {that, whether} it's raining.
 - b. John told Mary {that, whether} it was raining.

Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egré 2015, Uegaki 2015)

Finding #1

Cognitives take separate P and Q types, while communicatives take a hybrid $P \oplus Q$ type.

Finding #2

Only the cognitive types are replicated when looking at a corpus (though apparent communicative types still show up).

Further investigation of type signatures

Seven other type signatures that are also remarkably coherent

Further investigation of type signatures

Seven other type signatures that are also remarkably coherent

Example

Many nonfinite-taking verbs

Atomic v. structured type signatures

Currently treating type signatures as atomic but type signatures have rich structure

Idea

Build a model that represents mappings from...

- 1. ...verbs to the primitive types they relate
- 2. ...type signatures to the primitive types they are constituted of
- 3. ...primitive types to the syntactic constituents they map to

Homophony v. regular polysemy v. underspecification

Patterns in how semantic type signatures distribute across verbs may belie regular polysemy rules.

Homophony v. regular polysemy v. underspecification

Patterns in how semantic type signatures distribute across verbs may belie regular polysemy rules.

Idea

Polysemous verbs are those that fall outside dense regions of type signature space.

Finding polysemous verbs

Finding polysemous verbs

Finding polysemous verbs

Homophony v. regular polysemy v. underspecification

Patterns in how semantic type signatures distribute across verbs may belie regular polysemy rules.

Idea

Polysemous verbs are those that fall outside dense regions of type signature space.

Homophony v. regular polysemy v. underspecification

Patterns in how semantic type signatures distribute across verbs may belie regular polysemy rules.

Idea

Polysemous verbs are those that fall outside dense regions of type signature space.

Question

Can we learn rules of regular polysemy using an elaborated version of the model proposed here?

I am grateful to audiences at Johns Hopkins University, SALT 26, and ESSLLI 2017 for discussion of this work. I would like to thank Ben Van Durme, Shevaun Lewis, and Dee Reisinger in particular for useful comments.

This work was funded in part by by NSF DDRIG-1456013 (Doctoral Dissertation Research: Learning attitude verb meanings), NSF INSPIRE BCS-1344269 (Gradient symbolic computation), and the JHU Science of Learning Institute.

Thanks

Some of the broader ideas also developed with...

Valentine Hacquard

University of Maryland Department of Linguistics

Jeff Lidz

University of Maryland Department of Linguistics Agresti, Alan. 2014. *Categorical Data Analysis*. John Wiley & Sons. Akaike, Hirotugu. 1974. A new look at the statistical model identification. *IEEE Transactions on Automatic Control* 19(6). 716–723.

- Aloni, Maria & Floris Roelofsen. 2011. Interpreting concealed questions. *Linguistics and Philosophy* 34(5). 443–478.
- Baker, Carl Leroy. 1968. *Indirect Questions in English*: University of Illinois dissertation.
- Baroni, Marco, Silvia Bernardini, Adriano Ferraresi & Eros Zanchetta. 2009. The WaCky wide web: a collection of very large linguistically processed web-crawled corpora. *Language resources and evaluation* 43(3). 209–226.

Bibliography II

- Carter, Richard. 1976. Some linking regularities. In *On Linking: Papers by Richard Carter* Lexicon Project Working Papers (Vol. 25), Cambridge, MA: MIT Center for Cognitive Science.
- Chomsky, Noam. 1981. *Lectures on Government and Binding: The Pisa Lectures*. Walter de Gruyter.
- Church, Kenneth W. & William A. Gale. 1995. Poisson mixtures. Natural Language Engineering 1(02). 163–190.
- Erlewine, Michael Yoshitaka & Hadas Kotek. 2015. A streamlined approach to online linguistic surveys. Natural Language & Linguistic Theory 1–15. doi:10.1007/s11049-015-9305-9. http://link.springer.com/article/10.1007/ s11049-015-9305-9.
- Frana, Ilaria. 2010a. *Concealed Questions. In Search of Answers:* University of Massachusetts, Amherst dissertation.

Bibliography III

Frana, Ilaria. 2010b. *Concealed Questions: in search of answers:* University of Massachusetts at Amherst Ph.D. dissertation.

- Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari & Donald B. Rubin. 2013. *Bayesian data analysis*. CRC press.
- George, Benjamin Ross. 2011. *Question Embedding and the Semantics of Answers*: University of California Los Angeles dissertation.
- Ginzburg, Jonathan. 1995. Resolving questions, II. *Linguistics and Philosophy* 18(6). 567–609.
- Grimshaw, Jane. 1979. Complement selection and the lexicon. *Linguistic Inquiry* 10(2). 279–326.

Grimshaw, Jane. 1990. Argument structure. Cambridge, MA: MIT Press.

Bibliography IV

- Groenendijk, Jeroen & Floris Roelofsen. 2009. Inquisitive semantics and pragmatics. Paper presented at Stanford workshop on Language, Communication, and Rational Agency.
- Groenendijk, Jeroen & Martin Stokhof. 1984. *Studies on the Semantics of Questions and the Pragmatics of Answers*: University of Amsterdam dissertation.
- Gruber, Jeffrey Steven. 1965. *Studies in Lexical Relations*: Massachusetts Institute of Technology dissertation.
- Hacquard, Valentine & Alexis Wellwood. 2012. Embedding epistemic modals in English: A corpus-based study. *Semantics and Pragmatics* 5(4). 1–29.
- Heim, Irene. 1979. Concealed questions. In R. Bäuerle, U. Egli & A.v. Stechow (eds.), *Semantics from Different Points of View* Springer Series in Language and Communication, 51–60. Springer.

Bibliography V

- Heim, Irene. 1994. Interrogative semantics and Karttunen's semantics for know. In *Proceedings of Israel Association for Theoretical Linguistics*, vol. 1, 128–144.
- Jackendoff, Ray. 1972. Semantic Interpretation in Generative Grammar. Cambridge, MA: MIT Press.
- Karttunen, Lauri. 1977. Syntax and semantics of questions. *Linguistics and Philosophy* 1(1). 3–44.
- Kingma, Diederik & Jimmy Ba. 2014. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980* .
- Korhonen, Anna, Yuval Krymolowski & Ted Briscoe. 2006. A large subcategorization lexicon for natural language processing applications. In *Proceedings of LREC*, vol. 6, .
- Lahiri, Utpal. 2002. *Questions and Answers in Embedded Contexts*. Oxford University Press.

Bibliography VI

- Levin, Beth. 1993. English Verb Classes and Alternations: A preliminary investigation. Chicago: University of Chicago Press.
- Lewis, David. 1988. Relevant implication. Theoria 54(3). 161–174.
- Marr, David. 1982. Vision: a computational investigation into the human representation and processing of visual information. *Henry Holt and Co.*.
- Nathan, Lance Edward. 2006. *On the Interpretation of Concealed Questions*: Massachusetts Institute of Technology dissertation.
- Nivre, Joakim, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov & Erwin Marsi. 2007. MaltParser: A language-independent system for data-driven dependency parsing. *Natural Language Engineering* 13(02). 95–135.
- Pesetsky, David. 1982. *Paths and Categories*: Massachusetts Institute of Technology dissertation.

Pesetsky, David. 1991. Zero syntax: vol. 2: Infinitives.

- Pinker, Steven. 1984. Language Learnability and Language Development. Harvard University Press.
- Pinker, Steven. 1989. Learnability and Cognition: The Acquisition of Argument Structure. Cambridge, MA: MIT Press.
- Rawlins, Kyle. 2013. About 'about'. In Todd Snider (ed.), *Semantics* and Linguistic Theory, vol. 23, 336–357.
- Romero, Maribel. 2005. Concealed questions and specificational subjects. *Linguistics and Philosophy* 28(6). 687–737.
- Spector, Benjamin & Paul Egré. 2015. A uniform semantics for embedded interrogatives: An answer, not necessarily the answer. *Synthese* 192(6). 1729–1784.

Bibliography VIII

Uegaki, Wataru. 2012. Content nouns and the semantics of question-embedding predicates. In Ana Aguilar-Guevara, Anna Chernilovskaya & Rick Nouwen (eds.), *Proceedings of SuB 16*, .

Uegaki, Wataru. 2015. *Interpreting questions under attitudes*: Massachusetts Institute of Technology dissertation.

- White, Aaron Steven. 2015. *Information and Incrementality in Syntactic Bootstrapping*: University of Maryland dissertation.
- White, Aaron Steven, Valentine Hacquard & Jeffrey Lidz. 2015. Projecting attitudes.
- White, Aaron Steven & Kyle Rawlins. 2016. A computational model of S-selection. In Mary Moroney, Carol-Rose Little, Jacob Collard & Dan Burgdorf (eds.), *Semantics and Linguistic Theory*, vol. 26, 641–663.

White, Aaron Steven & Kyle Rawlins. 2017. Question agnosticism and change of state. In *Proceedings of Sinn und Bedeutung 21*, to appear.