The typology of veridicality inferences

Aaron Steven White ${ }^{1}$ Kyle Rawlins ${ }^{2}$
${ }^{1}$ University of Rochester
Department of Linguistics
${ }^{2}$ Johns Hopkins University
Department of Cognitive Science
NELS 49
Cornell University
5 October 2018

Slides available at aaronstevenwhite.io

Data available at megaattitude.io

Introduction

Overarching question

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; Iackendoff 1972;

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

Overarching question

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; Iackendoff 1972;

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

Semantic

Properties
$\left[\begin{array}{cc}+ & \text { Telic } \\ - & \text { durative } \\ - & \text { Stative } \\ & \cdots\end{array}\right]$

Overarching question

How are a verb's semantic properties related to its syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 977; ;ackendoff $972 ;$

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

What could matter?

Factors claimed to affect the distribution of nominals

Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

What could matter?

Factors claimed to affect the distribution of nominals

Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

Factors claimed to affect the distribution of clauses
Sensitive to 'content-dependent' properties like representationality, preferentiality, factivity/veridicality, communicativity, etc. Bolinger 1968;
Hintikka 1975; Hooper 1975; Stalnaker 1984; Farkas 1985; Villalta 2000, 2008; Kratzer 2006; Egré 2008;
Scheffler 2009; Moulton 2009; Anand and Hacquard 2013; Rawlins 2013; Portner and Rubinstein
2013; Anand and Hacquard 2014; Spector and Egré 2015; Bogal-Allbritten 2016; Theiler et al. 2017

What could matter?

Factors claimed to affect the distribution of nominals

Sensitive to event structural properties like stativity, telicity, durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

Factors claimed to affect the distribution of clauses
Sensitive to 'content-dependent' properties like representationality, preferentiality, factivity/veridicality, communicativity, etc. Bolinger 1968;
Hintikka 1975; Hooper 1975; Stalnaker 1984; Farkas 1985; Villalta 2000, 2008; Kratzer 2006; Egré 2008;
Scheffler 2009; Moulton 2009; Anand and Hacquard 2013; Rawlins 2013; Portner and Rubinstein
2013; Anand and Hacquard 2014; Spector and Egré 2015; Bogal-Allbritten 2016; Theiler et al. 2017
Possibly indirectly, via e.g. neo-Davidsonian event decomposition
Kratzer 2006; Hacquard 2006; Moulton 2009; Anand and Hacquard 2013, 2014; Rawlins 2013;
Bogal-Allbritten 2016; White and Rawlins 2016b a.o.

Our prior work

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Our prior work

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Karttunen 1971a; Egré 2008; Kartunen 2012;
Spector and Egré 2015 a.o.

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Karttunen 1971a; Egré 2008; Kartunen 2012;
Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Karttunen 1971a; Egré 2008; Kartunen 2012;
Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Veridicality and factivity

Veridicality

A verb V is veridical iff NP V S entails S Kartunen 1971a; Egré 2008; Kartunen 2012;
Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Factivity

A verb v is factive iff NP \vee S presupposes S Kiparsky and Kiparsky 1970; Kartunen
1971b et seq

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Karttunen 1971a; Egré 2008; Kartunen 2012;
Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Factivity

A verb v is factive iff NP \vee S presupposes S Kiparsky and Kiparsky 1970; Kartunen
1971b et seq
(2) a. Jo didn't know that Bo was alive \rightarrow Bo was alive

Veridicality and factivity

Veridicality

A verb v is veridical iff NP V S entails S Karttunen 1971a; Egré 2008; Kartunen 2012;
Spector and Egré 2015 a.o.
(1) a. Jo knew that Bo was alive \rightarrow Bo was alive
b. Jo proved that Bo was alive \rightarrow Bo was alive

Factivity

A verb v is factive iff NP \vee S presupposes S Kiparsky and Kiparsky 1970; Kartunen
1971b et seq
(2) a. Jo didn't know that Bo was alive \rightarrow Bo was alive
b. Jo didn't prove that Bo was alive \nrightarrow Bo was alive

Our prior work

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Our prior work

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Prior finding (NELS 2017)
But there are strong empirical reasons to believe they do not.

Our prior work

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Prior finding (NELS 2017)
But there are strong empirical reasons to believe they do not.
Limitation
Because prior generalizations focus on finite interrogatives \& declaratives, prior dataset covered only finite complements.

Our prior work

Question

How direct is the relationship between content-dependent properties and syntactic distribution?

Focus

Two content-dependent properties - factivity and veridicality - that are argued to determine selection of interrogatives \& declaratives

Prior finding (NELS 2017)
But there are strong empirical reasons to believe they do not.
Limitation
Because prior generalizations focus on finite interrogatives \& declaratives, prior dataset covered only finite complements.

But there is substantial variability in the veridicality inferences generated with different complements - even for the same verb.

Variability in veridicality

(3) a. Jo forgot that she i_{i} bought tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she e_{i} bought tofu. \rightarrow Jo bought tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she ${ }_{i}$ bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she ${ }_{i}$ bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu. \rightarrow Jo didn't buy tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she ${ }_{i}$ bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu. \rightarrow Jo didn't buy tofu.
(4) a. Jo o_{i} knew that she e_{i} bought tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she ${ }_{i}$ bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu. \rightarrow Jo didn't buy tofu.
(4) a. Jo ${ }_{i}$ knew that she j_{i} bought tofu. \rightarrow Jo bought tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she ${ }_{i}$ bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu. \rightarrow Jo didn't buy tofu.
(4) a. Jo knew that she j_{i} bought tofu. \rightarrow Jo bought tofu.
b. Jo knew to buy tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she e_{i} bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu. \rightarrow Jo didn't buy tofu.
(4) a. Jo knew that she $;$ bought tofu. \rightarrow Jo bought tofu.
b. Jo knew to buy tofu. \nrightarrow Jo \{bought, didn't buy\} tofu.

Variability in veridicality

(3) a. Jo ${ }_{i}$ forgot that she e_{i} bought tofu. \rightarrow Jo bought tofu.
b. Jo forgot to buy tofu. \rightarrow Jo didn't buy tofu.
(4) a. Jo knew that she $;$ bought tofu. \rightarrow Jo bought tofu.
b. Jo knew to buy tofu. \nrightarrow Jo \{bought, didn't buy\} tofu.

Today's talk

Question

Is there evidence that this variability correlates with distribution?

Today's talk

Question

Is there evidence that this variability correlates with distribution?
Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.

Today's talk

Question

Is there evidence that this variability correlates with distribution?
Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.
2. Data-driven typology of inference patterns across comp. types.

Today's talk

Question

Is there evidence that this variability correlates with distribution?
Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.
2. Data-driven typology of inference patterns across comp. types.

Analytical contributions

1. Inference pattern typology explains some parts of syntactic distribution reasonably well, but far from perfect.

Today's talk

Question

Is there evidence that this variability correlates with distribution?
Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.
2. Data-driven typology of inference patterns across comp. types.

Analytical contributions

1. Inference pattern typology explains some parts of syntactic distribution reasonably well, but far from perfect.
2. More likely that the veridicality-distribution relationship is indirect, mediated by fine-grained verb class.

Outline

Introduction

Outline

Introduction

A new veridicality dataset

Outline

Introduction

A new veridicality dataset

Data overview

Outline

Introduction

A new veridicality dataset

Data overview

Predicting distribution using veridicality

Outline

Introduction

A new veridicality dataset

Data overview

Predicting distribution using veridicality

Conclusion

A new veridicality dataset

Measuring veridicality and distribution

Aim
Measure syntactic distribution and veridicality inferences across a wide variety of syntactic contexts.

Measuring veridicality and distribution

Aim
Measure syntactic distribution and veridicality inferences across a wide variety of syntactic contexts.

MegaAcceptability dataset (white and Rawlins, 2016a)
Ordinal (1-7 scale) acceptability ratings for 1000 clause-embedding verbs in 50 syntactic frames

Measuring veridicality and distribution

Aim
Measure syntactic distribution and veridicality inferences across a wide variety of syntactic contexts.

MegaAcceptability dataset (white and Rawlins, 2016a)
Ordinal (1-7 scale) acceptability ratings for 1000 clause-embedding verbs in 50 syntactic frames

MegaVeridicality dataset (white and Rawlins, 2018)
Veridicality judgments for 517 verbs from the MegaAttitude based on their acceptability in the [NP _ that S] and [NP was _ed that S] frames

Veridicality judgment task

61. Someone knew that a particular thing happened.

Did that thing happen?
no
maybe or maybe
not yes

How acceptable is the bolded sentence?
terrible $\begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & \text { perfect }\end{array}$

Veridicality judgment task

68. Someone didn't know that a particular thing happened.

Did that thing happen?

> maybe or maybe not
yes

How acceptable is the bolded sentence?

terrible	2	3	4	5	6	perfect

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)

Stimuli

NP _ed for NP to VP

(5) a. Someone wanted for a particular thing to happen.
b. Someone didn't want for a particular thing to happen.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)

Stimuli

NP _ed for NP to VP

(5) a. Someone wanted for a particular thing to happen.
b. Someone didn't want for a particular thing to happen.

NP _ed NP to VP[+ev]
(6) a. Someone told a particular person to do a particular thing.
b. Someone didn't tell a particular person to do a particular thing.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)

Stimuli

NP _ed for NP to VP

(5) a. Someone wanted for a particular thing to happen.
b. Someone didn't want for a particular thing to happen.

NP _ed NP to VP[+ev]
(6) a. Someone told a particular person to do a particular thing.
b. Someone didn't tell a particular person to do a particular thing.

NP _ed NP to VP[-ev]
(7) a. Someone believed a particular person to have a particular thing.
b. Someone didn't believe a particular person to have a particular thing.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)

Stimuli

NP was _ed to VP[+ev]

(8) a. A particular person was ordered to do a particular thing.
b. A particular person wasn't ordered to do a particular thing.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)

Stimuli

NP was _ed to VP[+ev]
(8) a. A particular person was ordered to do a particular thing.
b. A particular person wasn't ordered to do a particular thing.

NP was _ed to VP[-ev]
(9) a. A particular person was overjoyed to have a particular thing.
b. A particular person wasn't overjoyed to have a particular thing.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)

Stimuli

NP _ed to VP[+ev]
(10) a. A particular person decided to do a particular thing.
b. A particular person didn't decide to do a particular thing.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)
- [NP _ed to VP[-ev]] (165 verbs)

Stimuli

NP _ed to VP[+ev]
(10) a. A particular person decided to do a particular thing.
b. A particular person didn't decide to do a particular thing.

NP _ed to VP[-ev]
(11) a. A particular person hoped to have a particular thing.
b. A particular person didn't hope to have a particular thing.

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)
- [NP _ed to VP[-ev]] (165 verbs)

Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability based on acceptability in 7 frames involving infinitival complements:

- [NP _ed for NP to VP] (184 verbs)
- [NP _ed NP to VP[+ev]] (197 verbs)
- [NP _ed NP to VP[-ev]] (128 verbs)
- [NP was _ed NP to VP[+ev]] (278 verbs)
- [NP was _ed NP to VP[-ev]] (256 verbs)
- [NP _ed to VP[+ev]] (217 verbs)
- [NP _ed to VP[-ev]] (165 verbs)

2,850 items randomly partitioned into 50 lists of 57

Results

Note
Mixed-effects ordinal model-based normalization to control for variability in how participants use the response scale. (see Agresti, 2014)

Results

Note

Mixed-effects ordinal model-based normalization to control for variability in how participants use the response scale. (see Agresti, 2014)

Applied to both veridicality and acceptability judgments.

Results

Note
Mixed-effects ordinal model-based normalization to control for variability in how participants use the response scale. (see Agresti, 2014)

Applied to both veridicality and acceptability judgments.

Intuition

Like z-scoring, but better models response behavior.

Data overview

Results

Results

Example: x-axis

A particular person didn't forget to do a particular thing.

Results

Results

Example: x-axis

A particular person didn't forget to do a particular thing.

Results

Example: x-axis

A particular person didn't forget to do a particular thing.

Example: y-axis

A particular person forgot to do a particular thing.

Results

Results

Results

Results

Results

Results

Predicting distribution using veridicality

Preliminaries

Goal
 Extract patterns of inference - e.g. factive, veridical, or implicative.

Preliminaries

Goal

Extract patterns of inference - e.g. factive, veridical, or implicative.
Approach
Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

Preliminaries

Goal

Extract patterns of inference - e.g. factive, veridical, or implicative.

Approach

Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

Method

Regularized censored factor analysis with loss weighted by normalized acceptability and scores constrained to ($-1,1$).

Preliminaries

Goal

Extract patterns of inference - e.g. factive, veridical, or implicative.

Approach

Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

Method

Regularized censored factor analysis with loss weighted by normalized acceptability and scores constrained to ($-1,1$).

Selected number of factors (12) using cross-validation procedure.

Preliminaries

Goal

Extract patterns of inference - e.g. factive, veridical, or implicative.

Approach

Use an automated method to discover inference patterns across verbs by decomposing veridical data into underlying factors.

Method

Regularized censored factor analysis with loss weighted by normalized acceptability and scores constrained to ($-1,1$).

Selected number of factors (12) using cross-validation procedure.
(Ask about specifics after the talk.)

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Pattern 3

Inference patterns

Pattern 3

Inference patterns: factivity/veridicality

Pattern 3

Inference patterns: factivity/veridicality

Pattern 3

Inference patterns: factivity/veridicality

Pattern 3

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Pattern 3

Inference patterns

Pattern 3

Inference patterns: factivity/veridicality

Pattern 3

Inference patterns: factivity/veridicality

Pattern 3

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns: implicatives

Pattern 1

Inference patterns: implicatives

Pattern 1

Inference patterns: implicatives

Pattern 1

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Inference patterns

$\begin{array}{rrrrr}-1.0 & -0.5 & 0.0 & 0.5 & 1.0\end{array}$

Predicting distribution from inference

Question

Can we predict syntactic distribution directly from veridicality inference patterns?

Predicting distribution from inference

Question

Can we predict syntactic distribution directly from veridicality inference patterns?

Approach
Learn optimal mapping from veridicality inference patterns to syntactic distribution using cross-validated ridge regression.

Predicting distribution from inference

Question

Can we predict syntactic distribution directly from veridicality inference patterns?

Approach
Learn optimal mapping from veridicality inference patterns to syntactic distribution using cross-validated ridge regression.

Finding
Across all frames in MegaAcceptability, this mapping explains about 20% of the variance in the acceptability judgments.

Predicting distribution from inference

Syntactic structure

Predicting distribution from inference

Syntactic structure

Predicting distribution from inference

Syntactic structure

Predicting distribution from inference

Points

1. Some amount of information about syntactic distribution carried in veridicality inferences.

Predicting distribution from inference

Points

1. Some amount of information about syntactic distribution carried in veridicality inferences.
1.1 Caveat: It's hard to tell how much explanation is driven by syntactic information encoded in the patterns.

Inference patterns

Inference polarity
Matrix polarity \square negative \square positive

Predicting distribution from inference

Points

1. Some amount of information about syntactic distribution carried in veridicality inferences.
1.1 Caveat: It's hard to tell how much explanation is driven by syntactic information encoded in the patterns.

Predicting distribution from inference

Points

1. Some amount of information about syntactic distribution carried in veridicality inferences.
1.1 Caveat: It's hard to tell how much explanation is driven by syntactic information encoded in the patterns.
2. Not nearly enough information to base a generalization on.

Exploratory analysis

Question

What drives the relationship between veridicality and distribution?

Exploratory analysis

Question

What drives the relationship between veridicality and distribution?

Possibility

The relationship is indirect, mediated by underlying features that explain both distribution and veridicality.

Exploratory analysis

Question

What drives the relationship between veridicality and distribution?

Possibility

The relationship is indirect, mediated by underlying features that explain both distribution and veridicality.

Motivation

Relationship may be mediated by non-contentful properties of contentful events Kratzer 2006; Hacquard 2006; Moulton 2009; Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.

Exploratory analysis

Question

What drives the relationship between veridicality and distribution?

Possibility

The relationship is indirect, mediated by underlying features that explain both distribution and veridicality.

Motivation

Relationship may be mediated by non-contentful properties of contentful events Kratzer 2006; Hacquard 2006; Moulton 2009; Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.

Approach

Use Uniform Manifold Approximation and Projection (UMAP) to visualize the topological structure of the distribution and veridicality data. McInnes and Healy 2018

Exploratory analysis

Conclusion

Conclusion

Question

How do inference patterns in clause-embedding verbs relate to syntactic distribution?

Conclusion

Question

How do inference patterns in clause-embedding verbs relate to syntactic distribution?

Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.

Conclusion

Question

How do inference patterns in clause-embedding verbs relate to syntactic distribution?

Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.
2. Data-driven typology of inference patterns across comp. types.

Conclusion

Question

How do inference patterns in clause-embedding verbs relate to
syntactic distribution?

Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.
2. Data-driven typology of inference patterns across comp. types.

Analytical contributions

1. Inference pattern typology explains some parts of syntactic distribution reasonably well, but far from perfect.

Conclusion

Question

How do inference patterns in clause-embedding verbs relate to syntactic distribution?

Empirical contributions

1. Dataset capturing the variability of factivity and veridicality across finite and infinitival complement types.
2. Data-driven typology of inference patterns across comp. types.

Analytical contributions

1. Inference pattern typology explains some parts of syntactic distribution reasonably well, but far from perfect.
2. More likely that the veridicality-distribution relationship is indirect, mediated by fine-grained verb class.

Future directions

Big remaining question
How are inference patterns represented in the lexicon?

Future directions

Big remaining question
How are inference patterns represented in the lexicon?

Possibility 1

Verb class-specific rules (possibly sensitive to content-dependent properties, like veridicality and factivity).

Future directions

Big remaining question
How are inference patterns represented in the lexicon?

Possibility 1

Verb class-specific rules (possibly sensitive to content-dependent properties, like veridicality and factivity).

Possibility 2
More abstract semantic properties relevant to thematic roles - e.g. affectedness, existence, creation/destruction, ...

Thanks!

Acknowledgements and resources

For discussion of this work, we are grateful to audiences at JHU, University of Rochester, UMD, NELS 2017 in Reykjavik, as well as Valentine Hacquard, Rachel Rudinger, and Ben Van Durme.

Funded by NSF-BCS-1748969/BCS-1749025 The MegaAttitude Project: Investigating selection and polysemy at the scale of the lexicon and DARPA AIDA.

Data available at megaattitude.io

References i

Alan Agresti. Categorical Data Analysis. John Wiley \& Sons, 2014. ISBN 1-118-71085-1.
Pranav Anand and Valentine Hacquard. Epistemics and attitudes. Semantics and Pragmatics, 6(8):1-59, 2013.

Pranav Anand and Valentine Hacquard. Factivity, belief and discourse. In Luka Crnič and Uli Sauerland, editors, The Art and Craft of Semantics: A Festschrift for Irene Heim, volume 1, pages 69-90. MIT Working Papers in Linguistics, Cambridge, MA, 2014.

Elizabeth A. Bogal-Allbritten. Building Meaning in Navajo. PhD thesis, University of Massachusetts, Amherst, 2016.

Dwight Bolinger. Postposed main phrases: An English rule for the Romance subjunctive. Canadian Journal of Linguistics, 14(1):3-30, 1968.

Paul Egré. Question-embedding and factivity. Grazer Philosophische Studien, 77(1): 85-125, 2008.

Donka Farkas. Intensional Descriptions and the Romance Subjunctive Mood. Garland Publishing, New York, 1985. ISBN 0-8240-5426-1.

References ii

Charles John Fillmore. The grammar of hitting and breaking. In R.A. Jacobs and P.S. Rosenbaum, editors, Readings in English Transformational Grammar, pages 120-133. Ginn, Waltham, MA, 1970.

Jane Grimshaw. Complement selection and the lexicon. Linguistic Inquiry, 10(2): 279-326, 1979.

Jane Grimshaw. Argument Structure. MIT Press, Cambridge, MA, 1990. ISBN 0-262-07125-8.

Jeffrey Steven Gruber. Studies in Lexical Relations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1965.

Valentine Hacquard. Aspects of Modality. PhD thesis, Massachusetts Institute of Technology, 2006.

Jaakko Hintikka. Different Constructions in Terms of the Basic Epistemological Verbs: A Survey of Some Problems and Proposals. In The Intentions of Intentionality and Other New Models for Modalities, pages 1-25. Dordrecht: D. Reidel, 1975.

Joan B. Hooper. On assertive predicates. In John P. Kimball, editor, Syntax and Semantics, volume 4, pages 91-124. Academy Press, New York, 1975.

References iii

Ray Jackendoff. Semantic Interpretation in Generative Grammar. MIT Press, Cambridge, MA, 1972. ISBN 0-262-10013-4.

Lauri Karttunen. Implicative verbs. Language, pages 340-358, 1971a.
Lauri Karttunen. Some observations on factivity. Papers in Linguistics, 4(1):55-69, 1971b.

Lauri Karttunen. Simple and phrasal implicatives. In Proceedings of the First Joint Conference on Lexical and Computational Semantics, pages 124-131. Association for Computational Linguistics, 2012.

Paul Kiparsky and Carol Kiparsky. Fact. In Manfred Bierwisch and Karl Erich Heidolph, editors, Progress in Linguistics: A collection of papers, pages 143-173. Mouton, The Hague, 1970.

Angelika Kratzer. Decomposing attitude verbs, July 2006.
Beth Levin. English Verb Classes and Alternations: A preliminary investigation. University of Chicago Press, Chicago, 1993. ISBN 0-226-47533-6.

Beth Levin and Malka Rappaport Hovav. Argument Realization. Cambridge University Press, Cambridge, 2005. ISBN 0-521-66376-8.

References iv

Leland McInnes and John Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat], February 2018. URL http://arxiv.org/abs/1802.03426. arXiv: 1802.03426.
Keir Moulton. Natural Selection and the Syntax of Clausal Complementation. PhD thesis, University of Massachusetts, Amherst, 2009.

David Pesetsky. Paths and Categories. PhD thesis, Massachusetts Institute of Technology, 1982.

David Pesetsky. Zero syntax: vol. 2: Infinitives. 1991.
Steven Pinker. Learnability and Cognition: The Acquisition of Argument Structure. MIT Press, Cambridge, MA, 1989. ISBN 0-262-51840-6.

Paul Portner and Aynat Rubinstein. Mood and contextual commitment. Semantics and Linguistic Theory, 22:461-487, 2013.

Kyle Rawlins. About 'about'. Semantics and Linguistic Theory, 23:336-357, 2013.
Tatjana Scheffler. Evidentiality and German attitude verbs. University of Pennsylvania Working Papers in Linguistics, 15(1), 2009.

Benjamin Spector and Paul Egré. A uniform semantics for embedded interrogatives: An answer, not necessarily the answer. Synthese, 192(6):1729-1784, 2015.

References v

Robert Stalnaker. Inquiry. Cambridge University Press, Cambridge, 1984.
Nadine Theiler, Floris Roelofsen, and Maria Aloni. What's wrong with believing whether. In Semantics and Linguistic Theory, volume 27, pages 248-265, 2017.

Elisabeth Villalta. Spanish subjunctive clauses require ordered alternatives. Semantics and Linguistic Theory, 10:239-256, 2000.

Elisabeth Villalta. Mood and gradability: an investigation of the subjunctive mood in Spanish. Linguistics and Philosophy, 31(4):467-522, 2008.

Aaron Steven White and Kyle Rawlins. A computational model of S-selection. Semantics and Linguistic Theory, 26:641-663, 2016a.

Aaron Steven White and Kyle Rawlins. Question agnosticism and change of state., September 2016b.

Aaron Steven White and Kyle Rawlins. The role of veridicality and factivity in clause selection. In Proceedings of the 48th Annual Meeting of the North East Linguistic Society, page to appear, Amherst, MA, 2018. GLSA Publications.
Arnold M. Zwicky. In a manner of speaking. Linguistic Inquiry, 2(2):223-233, 1971.

