Neural Models of Factuality

Rachel Rudinger

Johns Hopkins University

Aaron Steven White

University of Rochester

Benjamin Van Durme

Johns Hopkins University

Rachel Rudinger

Aaron Steven White

Ben Van Durme

Student First Author

Rachel Rudinger

Slides at aaronstevenwhite.io

Did that event/state happen?

Nairn et al., 2006; Sauri and Pustejovsky, 2009, 2012; de Marneffe et al., 2012

Did that event/state happen?

Nairn et al., 2006; Sauri and Pustejovsky, 2009, 2012; de Marneffe et al., 2012

Unfortunately for LeBron James and the Cavs, though, **none** of the underdogs on the list above ended up **winning** the championship.

https://fivethirtyeight.com/features/six-key-stats-on-the-warriors-vs-cavs-re-re-rematch/

Did that event/state happen?

Nairn et al., 2006; Sauri and Pustejovsky, 2009, 2012; de Marneffe et al., 2012

Unfortunately for LeBron James and the Cavs, though, **none** of the underdogs on the list above ended up **winning** the championship.

DIDN'T HAPPEN!

https://fivethirtyeight.com/features/six-key-stats-on-the-warriors-vs-cavs-re-re-rematch/

Did that event/state happen?

Nairn et al., 2006; Sauri and Pustejovsky, 2009, 2012; de Marneffe et al., 2012

Unfortunately for LeBron James and the Cavs, though, **none** of the underdogs on the list above ended up **winning** the championship.

DIDN'T HAPPEN!

https://fivethirtyeight.com/features/six-key-stats-on-the-warriors-vs-cavs-re-re-rematch/

Event factuality is a window into complex interactions between semantic operators.

Kiparsky and Kiparsky, 1970; Karttunen, 1971a,b; Horn, 1972; Karttunen and Peters, 1979; Heim, 1992; Simons, 2001, 2007; Simons et al., 2010; Abusch, 2002, 2010; Gajewski, 2007; Anand and Hacquard, 2013, 2014

Event factuality is a window into complex interactions between semantic operators.

Kiparsky and Kiparsky, 1970; Karttunen, 1971a,b; Horn, 1972; Karttunen and Peters, 1979; Heim, 1992; Simons, 2001, 2007; Simons et al., 2010; Abusch, 2002, 2010; Gajewski, 2007; Anand and Hacquard, 2013, 2014

Because he didn't remember that he was the author of the words, he would pooh-pooh some passages...

http://mentalfloss.com/article/82018/10-charming-facts-about-eb-white

Event factuality is a window into complex interactions between semantic operators.

Kiparsky and Kiparsky, 1970; Karttunen, 1971a,b; Horn, 1972; Karttunen and Peters, 1979; Heim, 1992; Simons, 2001, 2007; Simons et al., 2010; Abusch, 2002, 2010; Gajewski, 2007; Anand and Hacquard, 2013, 2014

Because he didn't remember that he was the author of the words, he would pooh-pooh some passages...

http://mentalfloss.com/article/82018/10-charming-facts-about-eb-white

Event factuality is a window into complex interactions between semantic operators.

Kiparsky and Kiparsky, 1970; Karttunen, 1971a,b; Horn, 1972; Karttunen and Peters, 1979; Heim, 1992; Simons, 2001, 2007; Simons et al., 2010; Abusch, 2002, 2010; Gajewski, 2007; Anand and Hacquard, 2013, 2014

What I did wrong was I forgot and didn't remember to declare an interest in that I am a part of the co-operative.

https://www.pressandjournal.co.uk/fp/news/politics/holyrood/147678 6/north-east-msp-quits-partys-front-bench-after-failing-to-declare-interest-while-lobbying-councillors-to-support-planning-application/

Event factuality is a window into complex interactions between semantic operators.

Kiparsky and Kiparsky, 1970; Karttunen, 1971a,b; Horn, 1972; Karttunen and Peters, 1979; Heim, 1992; Simons, 2001, 2007; Simons et al., 2010; Abusch, 2002, 2010; Gajewski, 2007; Anand and Hacquard, 2013, 2014

What I did wrong was I forgot and didn't remember to declare an interest in that I am a part of the co-operative.

https://www.pressandjournal.co.uk/fp/news/politics/holyrood/147678 6/north-east-msp-quits-partys-front-bench-after-failing-to-declare-interest-while-lobbying-councillors-to-support-planning-application/

Event factuality is important for information extraction, KB population, ...

Event factuality is important for **information extraction**, KB population, ...

North Korea, South Korea agree to end war, denuclearize peninsula

By HAKYUNG KATE LEE and JOOHEE CHO Apr 27, 2018, 6:31 AM ET

Event factuality is important for information extraction, KB population, ...

North Korea, South Korea agree to end war, denuclearize peninsula

agreement-between(NK, SK)

Event factuality is important for information extraction, KB population, ...

North Korea, South Korea agree to end war, denuclearize peninsula

agreement-between(NK, SK)

end-war-between(NK, SK)

Event factuality is important for information extraction, KB population, ...

North Korea, South Korea agree to end war, denuclearize peninsula

agreement-between(NK, SK)

end-war-between(NK, SK)

denuclearize(NK+SK, KoreanPeninsula)

Event factuality is important for **information extraction**, **KB population**, ...

North Korea, South Korea agree to end war, denuclearize peninsula

agreement-between(NK, SK)

end-war-between(NK, SK)

denuclearize(NK+SK, KoreanPeninsula)

?

Our contributions

 New event factuality dataset on Universal Dependencies-English Web TreeBank

Our contributions

- New event factuality dataset on Universal Dependencies-English Web TreeBank
- Evaluation of simple, linguistically motivated neural models for event factuality prediction, yielding SOTA

- Data
- Models
- Results
- Analysis
- Conclusion

Data

- Data
- Models

- Data
- Models
- Results

- Data
- Models
- Results
- Analysis

- Data
- Models
- Results
- Analysis
- Conclusion

Focus on three existing factuality datasets:

- Focus on three existing factuality datasets:
 - 1. FACTBANK (9,761 predicates) Saurí & Pustejovsky 2009, 2012

- Focus on three existing factuality datasets:
 - 1. FACTBANK (9,761 predicates) Saurí & Pustejovsky 2009, 2012
 - 2. uw (13,644 predicates) Lee et al., 2015

- Focus on three existing factuality datasets:
 - 1. FACTBANK (9,761 predicates) Saurí & Pustejovsky 2009, 2012
 - 2. uw (13,644 predicates) Lee et al., 2015
 - 3. MEANTIME (1,395 predicates) Minard et al., 2016

Focus on three existing factuality datasets:

```
1. FAC All collected under slightly
2. UW different protocols
3. MEANTIME (1,395 predicates) Minard et al., 2016
```

- Focus on three existing factuality datasets:
 - 1. FACTBANK (9,761 predicates) Saurí & Pustejovsky 2009, 2012
 - 2. uw (13,644 predicates) Lee et al., 2015
 - 3. MEANTIME (1,395 predicates) Minard et al., 2016
- Unified Factuality Dataset: map factuality labels to [-3, 3] scale Stanovsky et al. 2017, following Lee et al., 2015

Existing Datasets

- Focus on three existing factuality datasets:
 - 1. FACTBANK (9,761 predicates) Saurí & Pustejovsky 2009, 2012
 - 2. UW (13,644 predicates) Lee et al., 2015
 - 3. MEANTIME (1,395 predicates) Minard et al., 2016
- Unified Factuality Dataset: map factuality labels to [-3, 3] scale Stanovsky et al. 2017, following Lee et al., 2015
 - Only top-level source for FACTBANK

Largest English factuality dataset to date

- Largest English factuality dataset to date
 - 27,289 predicates(+args) from PredPatt White et al. 2016

- Largest English factuality dataset to date
 - 27,289 predicates(+args) from PredPatt White et al. 2016
- Covers all of Universal Dependencies
 English Web Treebank v1.2 extends White et al. 2016

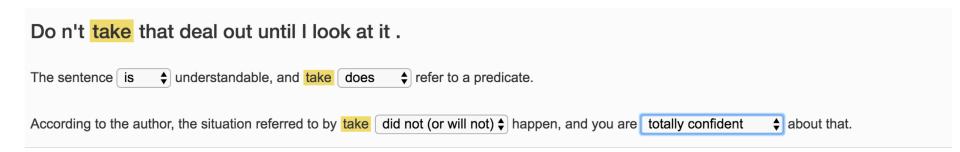
- Largest English factuality dataset to date
 - 27,289 predicates(+args) from PredPatt White et al. 2016
- Covers all of Universal Dependencies
 English Web Treebank v1.2 (extends White et al. 2016)
- Part of the Decompositional Semantics Initiative (decomp.net)

Collecting It Happened Dataset

Collecting It Happened Dataset



Collecting It Happened Dataset



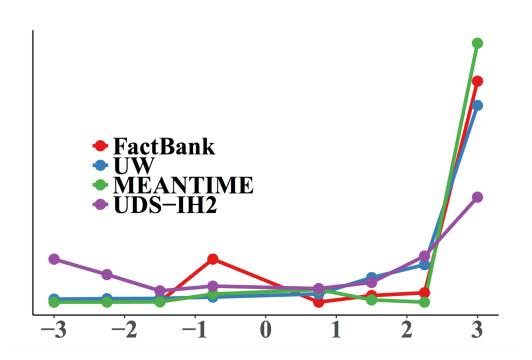
Existing Datasets

- Focus on three existing factuality datasets:
 - 1. FACTBANK (top-level source only) Saurí & Pustejovsky 2009, 2012
 - 2. UW Lee et al., 2015
 - 3. MEANTIME Minard et al., 2016
- Unified Factuality Dataset: map factuality labels to [-3, 3] scale Stanovsky et al. 2017, following Lee et al., 2015

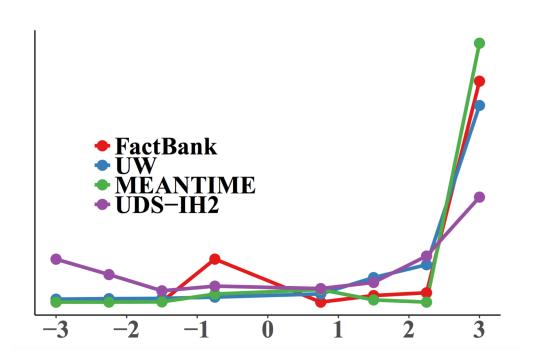
Existing Datasets

- Focus on three existing factuality datasets:
 - 1. FACTBANK (top-level source only) Saurí & Pustejovsky 2009, 2012
 - 2. UW Lee et al., 2015
 - 3. MEANTIME Minard et al., 2016
- Unified Factuality Dataset: map factuality labels
 to [-3, 3] scale Stanovsky et al. 2017, following Lee et al., 2015
- Map UD-It Happened to unified labels
 - Happened {yes -> +, no -> -} * ¾ * Confidence

Relative Frequency of Factuality Labels

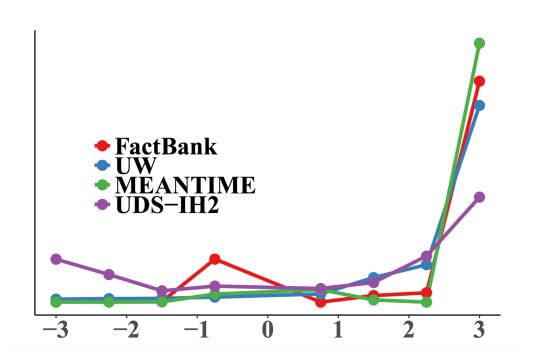


Relative Frequency of Factuality Labels



It-Happened shows more entropy in the distribution of labels

Relative Frequency of Factuality Labels



It-Happened shows more entropy in the distribution of labels

Higher entropy likely due to better genre distribution in UD

"Give me a call Tuesday afternoon to discuss (gone to Kelowna golfing for the weekend)"

DIDN'T HAPPEN!

Give me a call Tuesday afternoon to discuss (gone to Kelowna golfing for the weekend)

DIDN'T HAPPEN!

DIDN'T HAPPEN!

Give me a call Tuesday afternoon to discuss (gone to Kelowna golfing for the weekend)

DIDN'T HAPPEN!

DIDN'T HAPPEN!

Give me a call Tuesday afternoon to discuss gone to Kelowna golfing for the weekend)

HAPPENED!

Give me a call Tuesday afternoon to discuss

gone to Kelowna golfing for the weekend)

HAPPENED! HAPPENED!

I <3 Max's

I < 3 Max's

Models

Prior work

Hand-engineered feature (templates)

Prior work

- Hand-engineered feature (templates)
 - Rule-based factuality computation based on type-level operator lexicon

Nairn et al. 2006, Saurí 2008, Lotan et al. 2013

Signature Features

- (+) Pat **failed** to eat lunch.
- (-) Pat did not fail to eat lunch.

- → (-) Pat did not eat lunch.
- \rightarrow (+) Pat ate lunch.

Signature Features

(+) Pat **failed** to eat lunch.

 \rightarrow (-) Pat did not eat lunch.

(-) Pat did not fail to eat lunch.

 \rightarrow (+) Pat ate lunch.

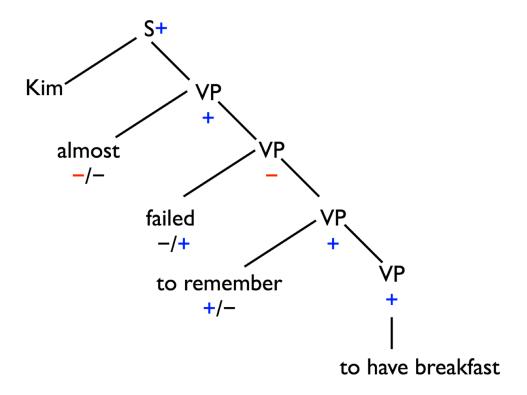
(+) Pat **managed** to eat lunch.

- \rightarrow (+) Pat ate lunch.
- (-) Pat did not manage to eat lunch. → (-) Pat did not eat lunch.

```
Signatures

fail to: -|+
manage to: +|-
...
```

Recursive Signature Application



Prior work

- Hand-engineered feature (templates)
 - Rule-based factuality computation based on type-level operator lexicon

Nairn et al. 2006, Saurí 2008, Lotan et al. 2013

Automatically extracted features + ML model;
 de Marneffe et al. 2012. Lee et al. 2016

Prior work

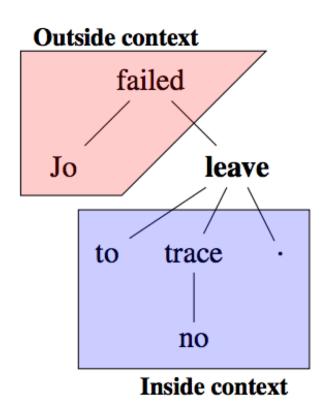
- Hand-engineered feature (templates)
 - Rule-based factuality computation based on type-level operator lexicon

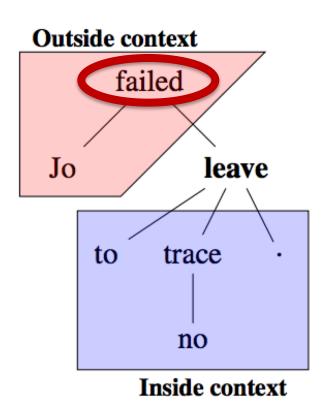
Nairn et al. 2006, Saurí 2008, Lotan et al. 2013

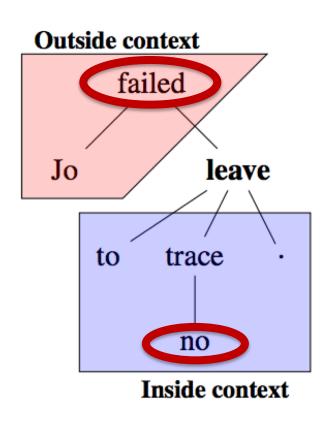
- Automatically extracted features + ML model;
 de Marneffe et al. 2012, Lee et al. 2016
- Combination of both strategies Stanovsky et al. 2017

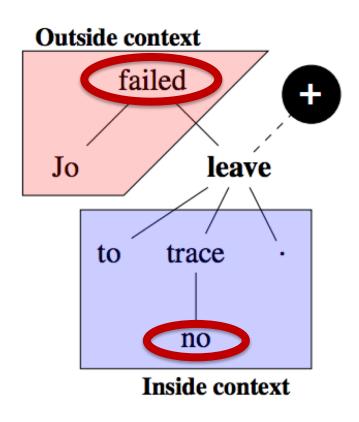
Our approach

 Learned features using neural model w/ access to inside and outside context









Our approach

 Learned features with access to both inside and outside context

Our approach

 Learned features with access to both inside and outside context (using bidirectional LSTMs)

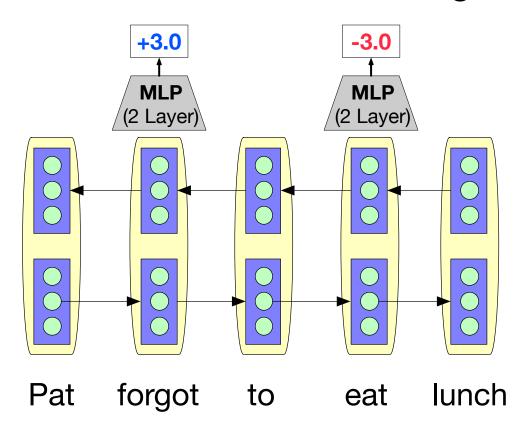
Our approach

- Learned features with access to both inside and outside context (using bidirectional LSTMs)
- 2. Push simple neural models as far as they can go with various training regimes and addition of linguistically motivated type-level features

Our Models

L(inear chain)-biLSTM

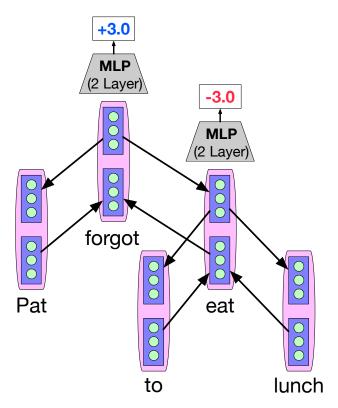
Model 1: Linear biLSTM + Regression



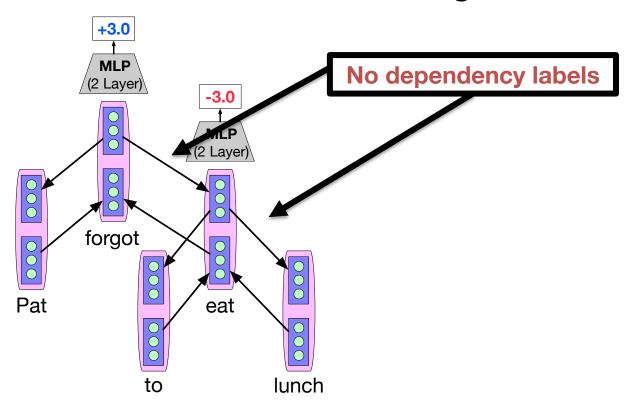
Our Models

- L(inear chain)-biLSTM
- (Dependency) T(ree)-biLSTM

Model 2: Child Sum Tree biLSTM + Regression



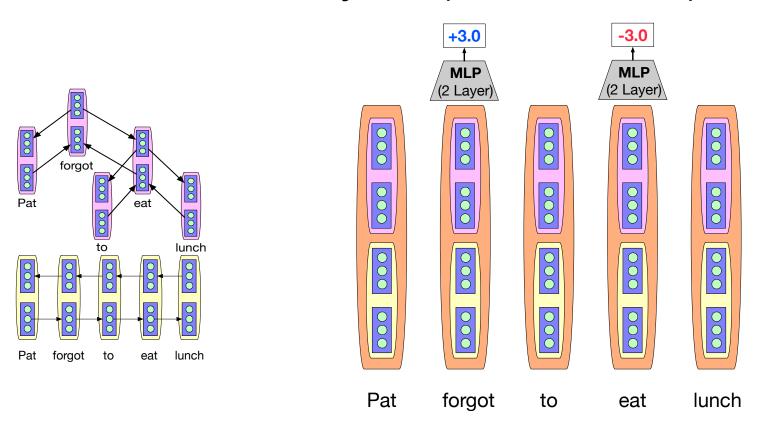
Model 2: Child Sum Tree biLSTM + Regression



Our Models

- L(inear chain)-biLSTM
- (Dependency) T(ree)-biLSTM
- H(ybrid)-biLSTM (parallel L- & T-biLSTMs)

Model 3: Hybrid (Linear + Tree)



Our Models

- L(inear chain)-biLSTM
- (Dependency) T(ree)-biLSTM
- H(ybrid)-biLSTM (parallel L- & T-biLSTMs)

Our Models

- L(inear chain)-biLSTM
- (Dependency) T(ree)-biLSTM
- H(ybrid)-biLSTM (parallel L- & T-biLSTMs)

Aim: barebones models that can capture features in both contexts.

Training Regimes

- Two settings
 - Single-task

Single-task Specific

A separate network for each dataset.

FactBank
MLP Regression
Params

UW MLP Regression Params MEANTIME MLP Regression Params It Happened MLP Regression Params

FactBank LSTM Params UW LSTM Params MEANTIME LSTM Params

It Happened LSTM Params

Single-task General

A single network.

Shared MLP Regression Params

Shared LSTM Params

Training Regimes

- Two settings
 - Single-task

Training Regimes

- Two settings
 - Single-task
 - Multi-task

"Multi-task" Training Regimes

Each dataset collected under slightly different protocols and may capture slightly different aspects of factuality

Idea: treat each factuality dataset as a task.

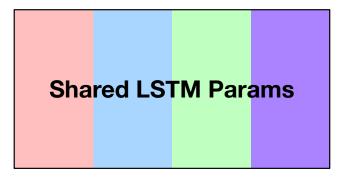
FactBank UW Meantime It Happened

Multi-task

A single network with separate regression parameters for each dataset.

FactBank
MLP Regression
Params

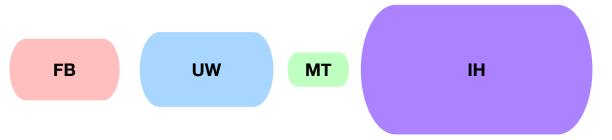
UW MLP Regression Params MEANTIME MLP Regression Params It Happened MLP Regression Params



Multi-task Sampling Strategies

1. SIMPLE.

Concatenate the datasets, no upsampling.



Multi-task Sampling Strategies

1. SIMPLE.

Concatenate the datasets, no upsampling.

FB

UW

MT

IH.

2. BALANCED.

Upsample smaller datasets until uniform.

FB

UW

MT

ΙH

Multi-task Sampling Strategies

1. SIMPLE.

Concatenate the datasets, no upsampling.

FB

UW

MT

IH

2. BALANCED.

Upsample smaller datasets until uniform.

FB

UW

MT

ΙH

3. FOCUSED.

Target dataset is 50% of all samples. Other datasets are divided uniformly.

FΒ

UW

MT

- IH

Type-level, appended to input embeddings.

- Type-level, appended to input embeddings.
- May propagate across hidden states.

- Type-level, appended to input embeddings.
- May propagate across hidden states.
- Two kinds of features:

- Type-level, appended to input embeddings.
- May propagate across hidden states.
- Two kinds of features:
 - Signature features (described earlier)

- Type-level, appended to input embeddings.
- May propagate across hidden states.
- Two kinds of features:
 - Signature features (described earlier)
 - Mined features: built using tense agreement
 score Pavlick and Callison-Burch, 2016

Mined Features

"There is a curious restriction that the main sentence containing an implicative predicate and the complement sentence necessarily agree in tense."

Karttunen, 1971

Pat managed to eat lunch yesterday.

Pat managed to eat lunch tomorrow.

Pat wanted to eat lunch yesterday.

Pat wanted to eat lunch tomorrow.

Mined Features

Pavlick and Callison-Burch, 2016

- Mine implicatives from text based on Karttunen's tense constraint, using NLP pipeline.
- Tense agreement score = #(agree) / #(agree+disagree)

Our replication of P&C

 Simple text-matching patters over Common Crawl (3B sentences):

```
I $VERB to $TIME
```

4 4	1.00		0.40
venture to	1.00	try to	0.42
forget to	0.80	agree to	0.34
manage to	0.79	promise to	0.22
bother to	0.61	want to	0.14
happen to	0.59	intend to	0.12
get to	0.52	plan to	0.10
decide to	0.45	hope to	0.03
dare to	0.44		

dare to	1.00	intend to	0.83
bother to	1.00	want to	0.77
happen to	0.99	decide to	0.75
forget to	0.99	promise to	0.75
manage to	0.97	agree to	0.35
try to	0.96	plan to	0.20
get to	0.90	hope to	0.05
venture to	0.85		

Results

	Fact	Bank	U	W	Mea	ntime	UDS-IH2	
	MAE	r	MAE	r	MAE	r	MAE	r
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960^{\dagger}	0.768
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755
T-biLSTM(2)-S+lexfeats	0.542	0.744	0.567	0.676	0.375	0.242	1.087	0.719
L-biLSTM(2)-MultiSimp	0.353	0.843	0.503	0.725	0.345	0.540	-	-
T-biLSTM(2)-MultiSimp	0.482	0.803	0.599	0.645	0.545	0.237	-	-
L-biLSTM(2)-MultiBal	0.391	0.821	0.496	0.724	0.278	0.613^{\dagger}	-	-
T-biLSTM(2)-MultiBal	0.517	0.788	0.573	0.659	0.400	0.405	-	-
L-biLSTM(1)-MultiFoc	0.343	0.823	0.516	0.698	0.229^{\dagger}	0.599	-	-
L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	-
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^\dagger
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857^{\dagger}	0.528	0.704	0.314	0.545	-	-
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749^{\dagger}	0.374	0.495	0.969	0.760

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

	Fact	FactBank		UW		Meantime		S-IH2
	MAE	r	MAE	r	MAE	r	MAE	r
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960^{\dagger}	0.768
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755

TOO MUCH INFO!

L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	_
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^\dagger
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857^\dagger	0.528	0.704	0.314	0.545	-	-
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749^{\dagger}	0.374	0.495	0.969	0.760

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

	Fact	Bank	U	W	Meantime		UDS	S-IH2
	MAE	r	MAE	r	MAE	r	MAE	r
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960	0.768
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755
T-biLSTM(2)-S+lexfeats	0.542	0.744	0.567	0.676	0.375	0.242	1.087	0.719
L-biLSTM(2)-MultiSimp	0.353	0.843	0.503	0.725	0.345	0.540	-	-
T-biLSTM(2)-MultiSimp	0.482	0.803	0.599	0.645	0.545	0.237	-	-
L-biLSTM(2)-MultiBal	0.391	0.821	0.496	0.724	0.278	0.613^{\dagger}	-	-
T-biLSTM(2)-MultiBal	0.517	0.788	0.573	0.659	0.400	0.405	-	-
L-biLSTM(1)-MultiFoc	0.343	0.823	0.516	0.698	0.229^{\dagger}	0.599	-	-
L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	-
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^{\dagger}
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857^{\dagger}	0.528	0.704	0.314	0.545	-	-
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749^{\dagger}	0.374	0.495	0.969	0.760

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

	Fact	Bank	U	W	Mea	ntime	UDS	S-IH2
	MAE	r	MAE	r	MAE	r	MAE	r
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960	0.768
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755
T-biLSTM(2)-S+lexfeats	0.542	0.744	0.567	0.676	0.375	0.242	1.087	0.719
L-biLSTM(2)-MultiSimp	0.353	0.843	0.503	0.725	0.345	0.540	-	-
T-biLSTM(2)-MultiSimp	0.482	0.803	0.599	0.645	0.545	0.237	-	-
L-biLSTM(2)-MultiBal	0.391	0.821	0.496	0.724	0.278	0.613^{\dagger}	-	-
T-biLSTM(2)-MultiBal	0.517	0.788	0.573	0.659	0.400	0.405	-	-
L-biLSTM(1)-MultiFoc	0.343	0.823	0.516	0.698	0.229^{\dagger}	0.599	-	-
L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	-
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^{\dagger}
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857^{\dagger}	0.528	0.704	0.314	0.545	-	-
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749^{\dagger}	0.374	0.495	0.969	0.760

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

	Fac	tBank	I	IW	Mea	ntime	ime LIDS-IH2			
	MAE	r	MAE	r	MAE	r	MAE	r		
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN		
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-		
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-		
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960^{\dagger}	0.768		
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704		
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-		
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-		
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755		
T-biLSTM(2)-S+lexfeats	0.542	0.744	0.567	0.676	0.375	0.242	1.087	0.719		
L-biLSTM(2)-MultiSimp	0.353	0.843	0.503	0.725	0.345	0.540	-	-		
T-biLSTM(2)-MultiSimp	0.482	0.803	0.599	0.645	0.545	0.237	-	-		
L-biLSTM(2)-MultiBal	0.391	0.821	0.496	0.724	0.278	0.613 [†]	-	-		
T-biLSTM(2)-MultiBal	0.517	0.788	0.573	0.659	0.400	0.405	-	-		
L-biLSTM(1)-MultiFoc	0.343	0.823	0.516	0.698	0.229^{\dagger}	0.599	-	-		
L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	-		
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-		
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^{\dagger}		
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723		
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768		
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857^{\dagger}	0.528	0.704	0.314	0.545	-	-		
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-		
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-		
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749 [†]	0.374	0.495	0.969	0.760		

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

	Fact	Rank	U	W	Mea	ntime	UDŞ	LIH2
	MAE	r	MAE	r	MAE	r	MAE	r
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960 [†]	0.768
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755
T-biLSTM(2)-S+lexfeats	0.542	0.744	0.567	0.676	0.375	0.242	1.087	0.719
L-biLSTM(2)-MultiSimp	0.353	0.843	0.503	0.725	0.345	0.540	-	-
T-biLSTM(2)-MultiSimp	0.482	0.803	0.599	0.645	0.545	0.237	-	-
L-biLSTM(2)-MultiBal	0.391	0.821	0.496	0.724	0.278	0.613^{\dagger}	-	-
T-biLSTM(2)-MultiBal	0.517	0.788	0.573	0.659	0.400	0.405	-	-
L-biLSTM(1)-MultiFoc	0.343	0.823	0.516	0.698	0.229†	0.599	-	-
L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	-
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^{\dagger}
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857 [†]	0.528	0.704	0.314	0.545	-	-
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749 [†]	0.374	0.495	0.969	0.760

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

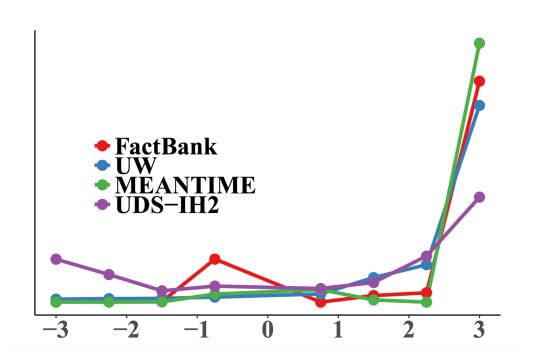
	Fact	Rank	U	W	Mea	ntime	UDŞ	LIH2
	MAE	r	MAE	r	MAE	r	MAE	r
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-
L-biLSTM(2)-S	0.427	0.826	0.508	0.719	0.427	0.335	0.960 [†]	0.768
T-biLSTM(2)-S	0.577	0.752	0.600	0.645	0.428	0.094	1.101	0.704
L-biLSTM(2)-G	0.412	0.812	0.523	0.703	0.409	0.462	-	-
T-biLSTM(2)-G	0.455	0.809	0.567	0.688	0.396	0.368	-	-
L-biLSTM(2)-S+lexfeats	0.429	0.796	0.495	0.730	0.427	0.322	1.000	0.755
T-biLSTM(2)-S+lexfeats	0.542	0.744	0.567	0.676	0.375	0.242	1.087	0.719
L-biLSTM(2)-MultiSimp	0.353	0.843	0.503	0.725	0.345	0.540	-	-
T-biLSTM(2)-MultiSimp	0.482	0.803	0.599	0.645	0.545	0.237	-	-
L-biLSTM(2)-MultiBal	0.391	0.821	0.496	0.724	0.278	0.613^{\dagger}	-	-
T-biLSTM(2)-MultiBal	0.517	0.788	0.573	0.659	0.400	0.405	-	-
L-biLSTM(1)-MultiFoc	0.343	0.823	0.516	0.698	0.229†	0.599	-	-
L-biLSTM(2)-MultiFoc	0.314	0.846	0.502	0.710	0.305	0.377	-	-
T-biLSTM(2)-MultiFoc	1.100	0.234	0.615	0.616	0.395	0.300	-	-
L-biLSTM(2)-MultiSimp w/UDS-IH2	0.377	0.828	0.508	0.722	0.367	0.469	0.965	0.771^{\dagger}
T-biLSTM(2)-MultiSimp w/UDS-IH2	0.595	0.716	0.598	0.609	0.467	0.345	1.072	0.723
H-biLSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768
H-biLSTM(1)-MultiSimp	0.313^{\dagger}	0.857 [†]	0.528	0.704	0.314	0.545	-	-
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	-
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	-	-
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749 [†]	0.374	0.495	0.969	0.760

Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

	Fact MAE	Rank r	MAE U	W r	Mea MAE	ntime r	UDS MAE	r r			
All-3.0	0.8	NAN	0.78	NAN	0.31	NAN	2.255	NAN			
Lee et al. 2015	-	-	0.511	0.708	-	-	-	-			
Stanovsky et al. 2017	0.59	0.71	0.42^{\dagger}	0.66	0.34	0.47	-	-			
Better controls for (lack of) variance in											
			L.a!	L -	المساد						
rating		IS	tri	DI	UU		ns				
5											
H-DILSTM(2)-S	0.488	0.775	0.526	0.714	0.442	0.255	0.967	0.768			
H-biLSTM(1)-MultiSimp	0.313†	0.857	0.528	0.704	0.314	0.545	-	-			
H-biLSTM(2)-MultiSimp	0.431	0.808	0.514	0.723	0.401	0.461	-	- 1			
H-biLSTM(2)-MultiBal	0.386	0.825	0.502	0.713	0.352	0.564	- 0.060	-			
H-biLSTM(2)-MultiSimp w/UDS-IH2	0.393	0.820	0.481	0.749^{\dagger}	0.374	0.495	0.969	0.760			

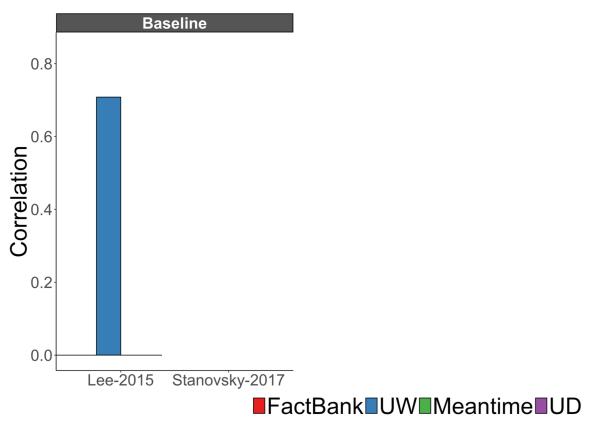
Table 4: All 2-layer systems and overall best systems (shaded in purple). State-of-the-art results in bold. † indicates best in column. Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced, MultiFoc=multi-task focused, w/UDS-IH2=trained on all data including UDS-IH2. All-3.0 is a constant baseline, always predicting 3.0.

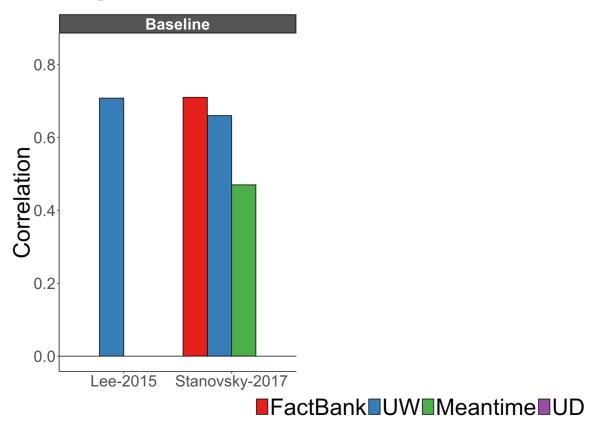
Relative Frequency of Factuality Labels

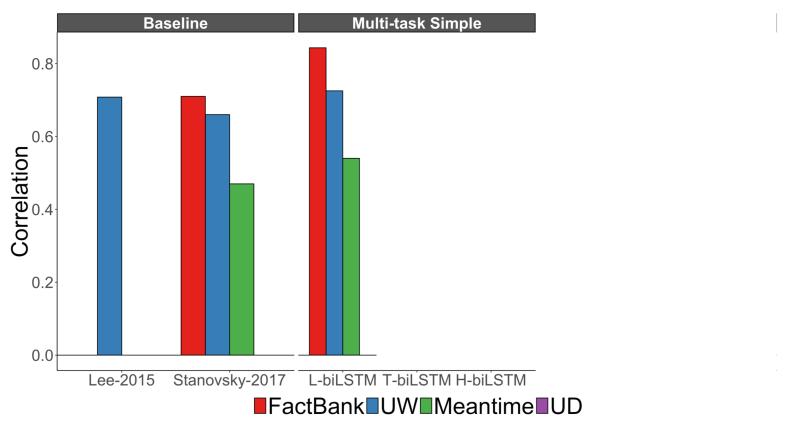


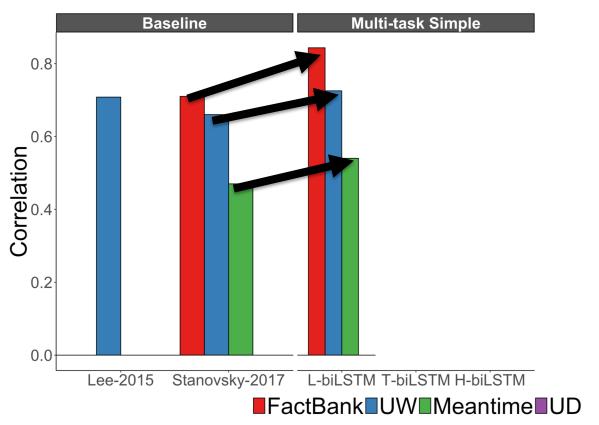
It-Happened shows more entropy in the distribution of labels

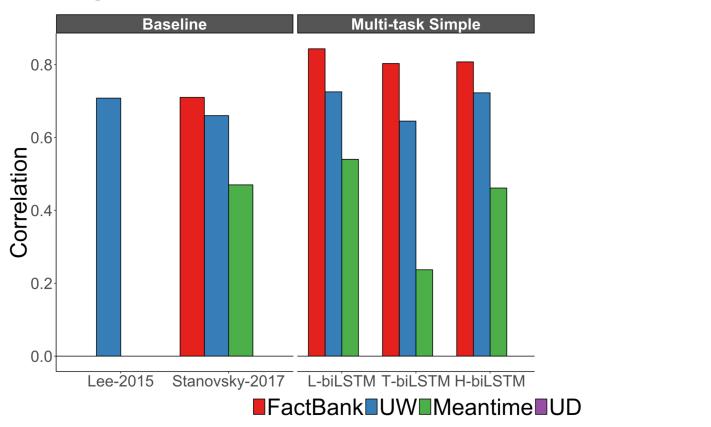
Higher entropy likely due to better genre distribution in UD

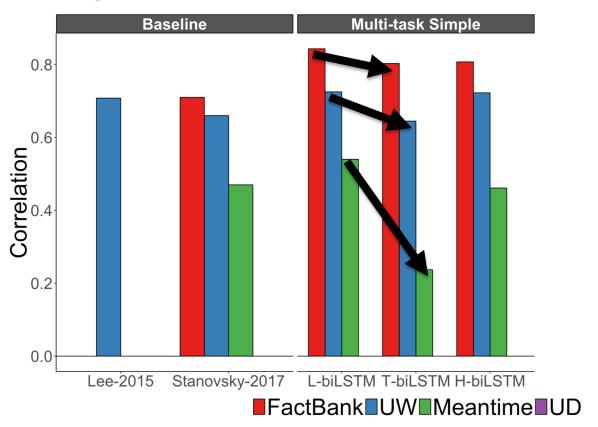


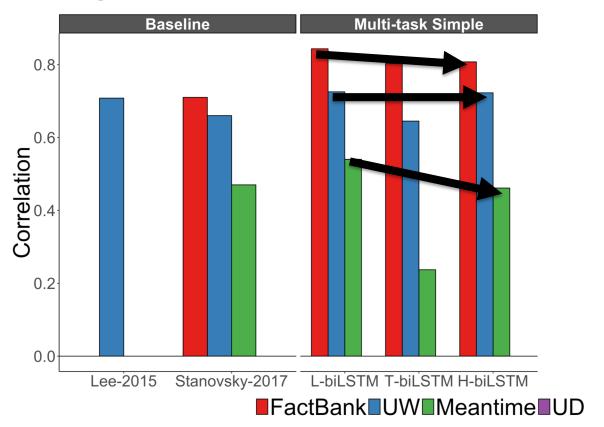


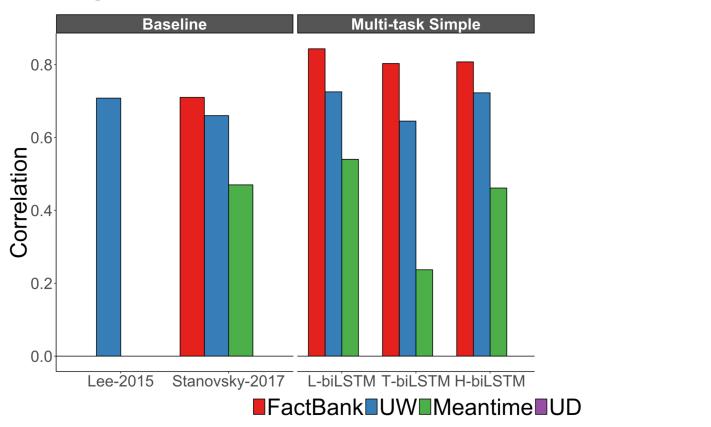


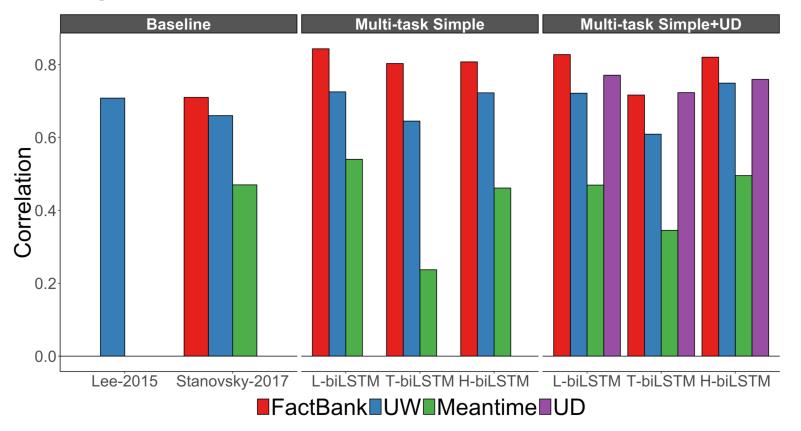


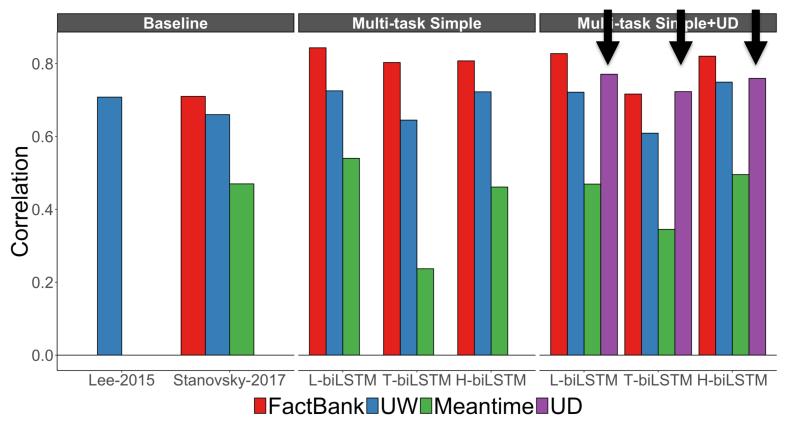


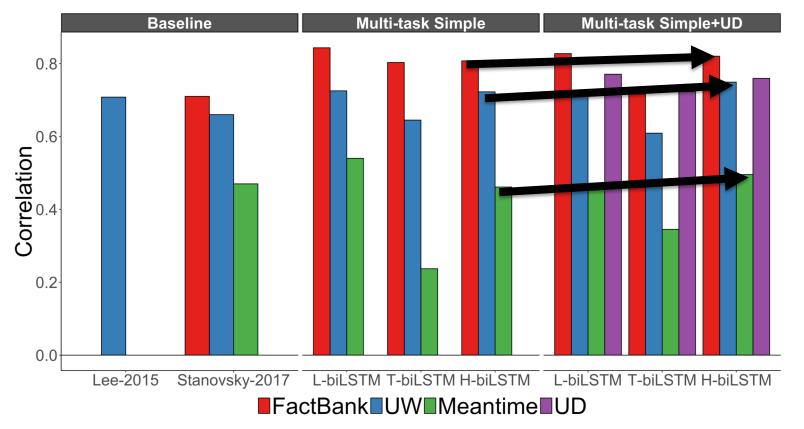












Analysis

Analysis

- Conducted analyses on UD-It Happened
 - Predictability of factuality based on parent dependency of predicate

Error by parent dependency

Relation	Mean Label	L-biLSTM	T-biLSTM	#
root	1.07	1.03	0.96	949
conj	0.37	0.44	0.46	316
advcl	0.46	0.53	0.45	303
xcomp	-0.42	-0.57	-0.49	234
acl:relcl	1.28	1.40	1.31	193
ccomp	0.11	0.31	0.34	191
acl	0.77	0.59	0.58	159
parataxis	0.44	0.63	0.79	127
amod	1.92	1.88	1.81	76
csubj	0.36	0.38	0.27	37

Analysis

- Conducted analyses on UD-It Happened
 - Predictability of factuality based on parent dependency of predicate
 - Predictability of factuality based on modal or negation dependent

Error by presence of modal/neg

Modal	Negated	Mean Label	Linear MAE	Tree MAE	#
NONE	no	1.00	0.93	1.03	2244
NONE	yes	-0.19	1.40	1.69	98
may	no	-0.38	1.00	0.99	14
would	no	-0.61	0.85	0.99	39
ca(n't)	yes	-0.72	1.28	1.55	11
can	yes	-0.75	0.99	0.86	6
(wi)'ll	no	-0.94	1.47	1.14	8
could	no	-1.03	0.97	1.32	20
can	no	-1.25	1.02	1.21	73
might	no	-1.25	0.66	1.06	6
would	yes	-1.27	0.40	0.86	5
should	no	-1.31	1.20	1.01	22
will	no	-1.88	0.75	0.86	75

Analysis

- Conducted analyses on UD-It Happened
 - Predictability of factuality based on parent dependency of predicate
 - Predictability of factuality based on modal or negation dependent
 - Manual error analysis of 50 worst predicted

Attribute	#
Grammatical error present, incl. run-ons	
Is an auxiliary or light verb	
Annotation is incorrect	
Future event	
Is a question	5
Is an imperative	3
Is not an event or state	2
One or more of the above	43

Attribute	#
Grammatical error present, incl. run-ons	
Is an auxiliary or light verb	
Annotation is incorrect	13
Future event	12
Is a question	5
Is an imperative	3
Is not an event or state	2
One or more of the above	43

Attribute	#
Grammatical error present, incl. run-ons Is an auxiliary or light verb	16 14
Annotation is incorrect	
Future event	12
Is a question	-5
All labeled NOT HAPPEN	IED
One or more of the above	43

(We **check** in early afternoon and we fly next day.)

Before that, we are turned loose to **get** dinner.

Guerrillas threatened to **assassinate** Prime Minister Iyad Allawi and Minister of Defense Hazem Shaalan in retaliation for the attack.

Conclusion

Our contributions

 New event factuality dataset on Universal Dependencies-English Web TreeBank

Our contributions

- New event factuality dataset on Universal Dependencies-English Web TreeBank
- Evaluation of simple, linguistically motivated neural models for event factuality prediction, yielding SOTA

Thanks!

Research supported by the JHU HLTCOE, DARPA LORELEI + AIDA, and NSF-GRFP-1232825.

Rachel Rudinger

Aaron Steven White

Ben Van Durme