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New Dataset: It Happened
§ Largest English factuality dataset to date 

§ 27,289 predicates(+args) from PredPatt White et al. 2016

§ Covers all of Universal Dependencies
English Web Treebank v1.2 (extends White et al. 2016)

§ Part of the Decompositional Semantics 
Initiative (decomp.net)
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Existing Datasets
§ Focus on three existing factuality datasets:

1. FACTBANK (top-level source only) Saurí & Pustejovsky 2009, 2012

2. UW Lee et al., 2015

3. MEANTIME Minard et al., 2016

§ Unified Factuality Dataset: map factuality labels 
to [-3, 3] scale Stanovsky et al. 2017, following Lee et al., 2015

§ Map UD-It Happened to unified labels
§ Happened {yes -> +, no -> –} * ¾ * Confidence
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Signature Features
(+) Pat failed to eat lunch. à (−) Pat did not eat lunch. 
(−) Pat did not fail to eat lunch. à (+) Pat ate lunch. 

Signatures

fail to:  −|+
manage to: +|−
…

Nairn et al. 2006, Karttunen 2012

(+) Pat managed to eat lunch. à (+) Pat ate lunch. 
(−) Pat did not manage to eat lunch. à (−) Pat did not eat lunch.



Recursive Signature Application

https://web.stanford.edu/~laurik/presentations/CICLing.pdf
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Prior work
§ Hand-engineered feature (templates)

§ Rule-based factuality computation based on 
type-level operator lexicon 
Nairn et al. 2006, Saurí 2008, Lotan et al. 2013

§ Automatically extracted features + ML model; 
de Marneffe et al. 2012, Lee et al. 2016

§ Combination of both strategies Stanovsky et al. 2017
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Our approach
1. Learned features with access to both 

inside and outside context
(using bidirectional LSTMs)

2. Push simple neural models as far as 
they can go with various training 
regimes and addition of linguistically 
motivated type-level features
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Extension of Tai et al. 2015; see also Miwa & Bansal 2016 
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Our Models
§ L(inear chain)-biLSTM
§ (Dependency) T(ree)-biLSTM
§ H(ybrid)-biLSTM (parallel L- & T-biLSTMs)

Aim: barebones models that can capture 
features in both contexts.
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Single-task Specific

FactBank
MLP Regression 

Params

UW
MLP Regression 

Params

MEANTIME
MLP Regression 

Params

It Happened
MLP Regression 

Params

FactBank
LSTM Params

MEANTIME
LSTM Params

UW
LSTM Params

It Happened
LSTM Params

A separate network for each dataset.



Single-task General

Shared MLP Regression 
Params

Shared LSTM Params

A single network.
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“Multi-task” Training Regimes

FactBank UW Meantime It 
Happened

Idea: treat each factuality dataset as a task.

Each dataset collected under slightly 
different protocols and may capture 
slightly different aspects of factuality



Multi-task

Shared LSTM Params

FactBank
MLP Regression 

Params

UW
MLP Regression 

Params

MEANTIME
MLP Regression 

Params

It Happened
MLP Regression 

Params

A single network with separate regression parameters for each dataset.



Multi-task Sampling Strategies
FB UW MT IH

1. SIMPLE. 
Concatenate the 
datasets, no 
upsampling.



Multi-task Sampling Strategies
FB UW MT IH

FB UW MT IH

1. SIMPLE. 
Concatenate the 
datasets, no 
upsampling.

2. BALANCED. 
Upsample smaller 
datasets until uniform.



Multi-task Sampling Strategies
FB UW MT IH

FB UW MT IH

UW MT IHFB

1. SIMPLE. 
Concatenate the 
datasets, no 
upsampling.

2. BALANCED. 
Upsample smaller 
datasets until uniform.

3. FOCUSED.
Target dataset is 50% 
of all samples. Other 
datasets are divided 
uniformly.
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Linguistically-Motivated Features
§ Type-level, appended to input embeddings. 
§ May propagate across hidden states.
§ Two kinds of features:

§ Signature features (described earlier)
§ Mined features: built using tense agreement 

score Pavlick and Callison-Burch, 2016



Mined Features
“There is a curious restriction that the main sentence containing 
an implicative predicate and the complement sentence 
necessarily agree in tense.”

Karttunen, 1971

Pat managed to eat lunch yesterday.
# Pat managed to eat lunch tomorrow.

Pat wanted to eat lunch yesterday.
Pat wanted to eat lunch tomorrow.



Mined Features
Pavlick and Callison-Burch, 2016
• Mine implicatives from text based on 

Karttunen’s tense constraint, using NLP 
pipeline.

• Tense agreement score = 
#(agree) / #(agree+disagree)

Our replication of P&C
• Simple text-matching patters over 

Common Crawl (3B sentences): 
I $VERB to ___ $TIME
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Summary results

Better controls for 
(lack of) variance in 
rating distributions



Relative Frequency of Factuality Labels

It-Happened shows 
more entropy in the 
distribution of labels

Higher entropy likely 
due to better genre 
distribution in UD
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Analysis
• Conducted analyses on UD-It Happened
– Predictability of factuality based on parent 

dependency of predicate
– Predictability of factuality based on modal or 

negation dependent
–Manual error analysis of 50 worst predicted
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Manual error analysis

All labeled NOT HAPPENED



Manual error analysis
(We check in early afternoon and we fly next day.)



Manual error analysis
Before that , we are turned loose to get dinner .



Manual error analysis
Guerrillas threatened to assassinate Prime 
Minister Iyad Allawi and Minister of Defense 
Hazem Shaalan in retaliation for the attack .
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